×

Some properties of bornological convergences. (English) Zbl 1213.54035

Let \({\mathcal S}\) be an ideal in a quasi-uniform space \((X,{\mathcal U})\), i.e. a family of non-empty subsets which is closed under the formation of non-empty subsets and finite unions. A net \((A_\lambda)_{\lambda\in \Lambda}\) of non-empty subsets of \(X\) is said to \({\mathcal S}^+_{{\mathcal U}}\)-converge to \(A\) if \(A_\lambda\cap S\subset U(A)\) residually for each \(S\in{\mathcal S}\) and \(U\in{\mathcal U}\). It is said to \({\mathcal S}^-_{{\mathcal U}}\)-converge to \(A\) if \(A\cap S\subset U^{-1}(A_\lambda)\) residually for each \(S\in{\mathcal S}\) and \(U\in{\mathcal U}\). If it both \({\mathcal S}^+_{{\mathcal U}}\)-converges and \({\mathcal S}_{{\mathcal U}}\)-converges to \(A\), it is said to \({\mathcal S}^-_{{\mathcal U}}\)-converge to \(A\). In the first part of this paper, the authors consider the question under which circumstances these convergences are topological. They introduce pretopologies \({\mathcal N}^+_{{\mathcal S},{\mathcal U}}\), \({\mathcal N}^-_{{\mathcal S},{\mathcal U}}\), and \({\mathcal N}_{{\mathcal S},{\mathcal U}}\) on the the set \({\mathcal P}_0(X)\) of all non-empty subsets of \(X\) and prove the following:
Theorem 1. Let \({\mathcal S}\) be an ideal in a quasi-uniform space \((X,{\mathcal U})\) and \({\mathcal M}\) a collection of non-empty subsets of \(X\) containing all non-empty finite subsets. Then \({\mathcal N}^+_{{\mathcal S},{\mathcal U}}\) is a topology on \({\mathcal M}\) if and only if the \({\mathcal S}^+_{{\mathcal U}}\)-convergence is topological on \({\mathcal M}\).
Theorem 2. If additionally \({\mathcal S}\subset{\mathcal M}\), then \({\mathcal N}^-_{{\mathcal S},{\mathcal U}}\) is a topology on \({\mathcal M}\) if and only if the \({\mathcal S}^-_{{\mathcal U}}\)-convergence is topological on \({\mathcal M}\).
Theorem 3. \({\mathcal N}_{{\mathcal S},{\mathcal U}}\) is a topology on \({\mathcal M}\) if and only if the \({\mathcal S}_{{\mathcal U}}\)-convergence is topological on \({\mathcal M}\).
The second part of this paper is devoted to the study of precompactness, total boundedness, and compactness of a certain filter \({\mathcal U}_{\mathcal S}\) which was introduced by A. Lechicki, S. Levi and A. Spakowski in [J. Math. Anal. Appl. 297, No. 2, 751–770 (2004; Zbl 1062.54012)].

MSC:

54E15 Uniform structures and generalizations
54A05 Topological spaces and generalizations (closure spaces, etc.)

Citations:

Zbl 1062.54012
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Beer, G., Topologies on Closed and Closed Convex Sets (1993), Kluwer Academic Publishers · Zbl 0792.54008
[2] Beer, G., The Attouch-Wets topology in metric and normed spaces, Pac. J. Optim., 4, 3, 393-409 (2008) · Zbl 1191.54001
[3] Beer, G., Embedding of bornological universes, Set-Valued Anal., 16, 477-488 (2008) · Zbl 1171.54012
[4] Beer, G., Bornological convergence: a natural generalization of Attouch-Wets convergence, (di Maio, G.; Naimpally, S., Theory and Applications of Proximity, Nearness and Uniformity. Theory and Applications of Proximity, Nearness and Uniformity, Quad. Mat., vol. 22 (2009)), 45-70 · Zbl 1234.54001
[5] Beer, G., Product metric and boundedness, Appl. Gen. Topol., 9, 133-142 (2008)
[6] G. Beer, C. Costantini, S. Levi, Bornological convergence and shields, preprint.; G. Beer, C. Costantini, S. Levi, Bornological convergence and shields, preprint. · Zbl 1275.54003
[7] Beer, G.; Di Maio, G., Cofinal completeness of the Hausdorff metric topology, Fund. Math., 208, 1, 75-85 (2010) · Zbl 1198.54033
[8] Beer, G.; Levi, S., Total boundedness and bornologies, Topology Appl., 156, 1271-1288 (2009) · Zbl 1167.54008
[9] Beer, G.; Levi, S., Gap, excess and bornological convergence, Set-Valued Anal., 16, 4, 489-506 (2008) · Zbl 1165.54002
[10] Beer, G.; Levi, S., Pseudometrizable bornological convergence is Attouch-Wets convergence, J. Convex Anal., 15, 2, 439-453 (2008) · Zbl 1173.54002
[11] Beer, G.; Naimpally, S.; Rodríguez-López, J., \(S\)-topologies and bounded convergences, J. Math. Anal. Appl., 339, 542-552 (2008) · Zbl 1143.54006
[12] Beer, G.; Segura, M., Well-posedness, bornologies and the structure of metric spaces, Appl. Gen. Topol., 10, 131-157 (2009) · Zbl 1209.54016
[13] Berthiaume, G., On quasi-uniformities in hyperspaces, Proc. Amer. Math. Soc., 66, 335-343 (1977) · Zbl 0345.54026
[14] Bourbaki, N., Topologie Generale, Chapters 1 and 2 (1940), Hermann: Hermann Paris · Zbl 0026.43101
[15] Burdick, B. S., A note on completeness of hyperspaces, (Andima, S.; etal., General Topology and Applications, Proc. 5th Northeast Conf.. General Topology and Applications, Proc. 5th Northeast Conf., New York/NY (USA), 1989. General Topology and Applications, Proc. 5th Northeast Conf.. General Topology and Applications, Proc. 5th Northeast Conf., New York/NY (USA), 1989, Lect. Notes Pure Appl. Math., vol. 134 (1991)), 19-24 · Zbl 0766.54008
[16] Cao, J.; Künzi, H.-P. A.; Reilly, I., Hausdorff quasi-uniformities inducing the same hypertopologies, Publ. Math. Debrecen, 67, 27-40 (2005) · Zbl 1081.54022
[17] Čech, E., Topological Spaces (1966), Publishing House of the Czechoslovak Academy of Sciences · Zbl 0141.39401
[18] Choquet, G., Convergences, Ann. Univ. Grenoble, 23, 55-112 (1947-1948) · Zbl 0031.28101
[19] Dolecki, S., An initiation into convergence theory, (Mynard, F.; Pearl, E., Beyond Topology. Beyond Topology, Contemp. Math., vol. 486 (2009)), 115-162 · Zbl 1193.54003
[20] Dolecki, S.; Greco, G. H., Topologically maximal pretopologies, Studia Math., LXXVII, 265-281 (1984) · Zbl 0487.54003
[21] Deák, J., On the coincidence of some notions of quasi-uniform completeness defined by filter pairs, Studia Sci. Math. Hungar., 26, 411-413 (1991) · Zbl 0778.54015
[22] Fell, J. M.G., A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13, 472-476 (1962) · Zbl 0106.15801
[23] Fletcher, P.; Lindgren, W. F., Quasi-Uniform Spaces (1982), Marcel Dekker: Marcel Dekker New York · Zbl 0402.54024
[24] García-Raffi, L. M.; Romaguera, S.; Sánchez-Pérez, E. A., The Goldstine theorem for asymmetric normed linear spaces, Topology Appl., 156, 2284-2291 (2009) · Zbl 1185.54028
[25] Künzi, H. P.A., An introduction to quasi-uniform spaces, (Mynard, F.; Pearl, E., Beyond Topology. Beyond Topology, Contemp. Math., vol. 486 (2009)), 501-569 · Zbl 0767.54022
[26] Künzi, H. P.A.; Romaguera, S., Well-quasi-ordering and the Hausdorff quasi-uniformity, Topology Appl., 85, 207-218 (1998) · Zbl 0922.54024
[27] Künzi, H. P.A.; Romaguera, S., Left K-completeness of the Hausdorff quasi-uniformity, Rostock. Math. Kolloq., 51, 167-176 (1997) · Zbl 0880.54018
[28] Künzi, H. P.A.; Ryser, C., The Bourbaki quasi-uniformity, Topology Proc., 20, 161-182 (1995) · Zbl 0876.54022
[29] Lechicki, A.; Levi, S.; Spakowski, A., Bornological convergences, J. Math. Anal. Appl., 297, 751-770 (2004) · Zbl 1062.54012
[30] Levine, N.; Stager, W. J., On the hyper-space of a quasi-uniform space, Math. J. Okayama Univ., 15, 101-106 (1971-1972) · Zbl 0246.54033
[31] Lucchetti, R., Convexity and Well-Posed Problems, CMS Books Math./Ouvrages Math. SMC (2006), Springer · Zbl 1106.49001
[32] Di Maio, G.; Meccariello, E.; Naimpally, S., Uniformizing (proximal) Δ topologies, Topology Appl., 137, 99-113 (2004) · Zbl 1041.54026
[33] Di Maio, G.; Meccariello, E.; Naimpally, S., Bombay hypertopologies, Appl. Gen. Topol., 4, 421-444 (2003) · Zbl 1062.54013
[34] Di Maio, G.; Meccariello, E.; Naimpally, S., Graph topologies on closed multifunctions, Appl. Gen. Topol., 4, 445-465 (2003) · Zbl 1058.54006
[35] Di Maio, G.; Naimpally, S., Hit-and-far-miss topologies, Mat. Vesnik, 60, 59-78 (2008) · Zbl 1199.54069
[36] Michael, E., Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71, 152-182 (1951) · Zbl 0043.37902
[37] Naimpally, S., Proximity Approach to Problems in Topology and Analysis (2009), Oldenbourg: Oldenbourg Munich · Zbl 1185.54001
[38] Naimpally, S., All hypertopologies are hit-and-miss, Appl. Gen. Topol., 3, 45-53 (2002) · Zbl 1033.54006
[39] Poppe, H., Eine Bemerkung über Trennungsaxiome in Räumen von abgeschlossenen Teilmengen topologischer Räume, Arch. Math., 16, 197-199 (1965) · Zbl 0127.13004
[40] Reilly, I. L.; Subrahmanyam, P. V.; Vamanamurthy, M. K., Cauchy sequences in quasi-pseudo-metric spaces, Monatsh. Math., 93, 127-140 (1982) · Zbl 0472.54018
[41] Rockafellar, R. T.; Wets, R. J.-B., Variational Analysis, Comprehensive Studies in Mathematics, vol. 317 (1998), Springer · Zbl 0888.49001
[42] Rodríguez-López, J.; Romaguera, S., The relationship between the Vietoris topology and the Hausdorff quasi-uniformity, Topology Appl., 124, 451-464 (2002) · Zbl 1020.54017
[43] Rodríguez-López, J.; Schellekens, M.; Valero, Ó., An extension of the dual complexity space and an application to Computer Science, Topology Appl., 156, 3052-3061 (2009) · Zbl 1198.68153
[44] Romaguera, S., On hereditary precompactness and completeness in quasi-uniform spaces, Acta Math. Hungar., 73, 1-2, 159-178 (1996) · Zbl 0924.54035
[45] Vietoris, L., Bereiche zweiter Ordnung, Monatsh. Math., 32, 258-280 (1922) · JFM 48.0205.02
[46] Vroegrijk, T., Pointwise bornological spaces, Topology Appl., 156, 12, 2019-2027 (2009) · Zbl 1173.54012
[47] Vroegrijk, T., Pointwise bornological vector spaces, Topology Appl., 157, 8, 1558-1568 (2010) · Zbl 1198.46004
[48] Vroegrijk, T., Uniformizable and realcompact bornological universes, Appl. Gen. Topol., 10, 2, 277-287 (2009) · Zbl 1186.54027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.