A non-autonomous strongly damped wave equation: existence and continuity of the pullback attractor. (English) Zbl 1213.35121

Summary: We consider the strongly damped wave equation with time-dependent terms
\[ u_{tt}-\Delta u-\gamma (t)\Delta u_t+\beta_\varepsilon(t)u_t= f(u), \]
in a bounded domain \(\Omega\subset\mathbb R^n\), under some restrictions on \(\beta_\varepsilon(t)\), \(\gamma(t)\) and growth restrictions on the nonlinear term \(f\). The function \(\beta_\varepsilon(t)\) depends on a parameter \(\varepsilon\), \(\beta_\varepsilon(t)@>\varepsilon\to0>>0\). We prove, under suitable assumptions, local and global well-posedness (using the uniform sectorial operators theory), the existence and regularity of pullback attractors \(\{{\mathcal A}_\varepsilon(t):t\in\mathbb R\}\), uniform bounds for these pullback attractors, characterization of these pullback attractors and their upper and lower semicontinuity at \(\varepsilon=0\).


35B41 Attractors
35L71 Second-order semilinear hyperbolic equations
35L20 Initial-boundary value problems for second-order hyperbolic equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
Full Text: DOI Link


[1] Duvaut, G.; Lions, J.-L., Inequalities in mechanics and physics, (1976), Springer · Zbl 0331.35002
[2] Christiansen, P.L.; Lomdhal, P.S.; Soerensen, O.H., Soliton excitations in Josephson tunnel junctions, Phys. rev., 25, 5737-5748, (1982)
[3] Carvalho, A.N.; Cholewa, J.W., Local well-posedness for strongly damped wave equation with critical nonlinearities, Bull. aust. math. soc., 66, 443-463, (2002) · Zbl 1020.35059
[4] Carvalho, A.N.; Cholewa, J.W.; Dlotko, T., Strongly damped wave problems: bootstrapping and regularity of solutions, J. differential equations, 244, 2310-2333, (2008) · Zbl 1151.35056
[5] Bruschi, S.M.; Carvalho, A.N.; Cholewa, J.W.; Dlotko, T., Uniform exponential dichotomy and continuity of attractors for singular perturbed damped equations, J. dynam. differential equations, 18, 3, 767-814, (2006) · Zbl 1103.35020
[6] Chen, S.; Triggiani, R., Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. math., 135, 1, 15-55, (1989) · Zbl 0633.47025
[7] Chen, S.; Triggiani, R., Characterization of domains of fractional powers of certain operators arising in elastic systems, and applications, J. differential equations, 88, 2, 279-293, (1990) · Zbl 0717.34066
[8] Kalantarov, V.; Zelik, S., Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. differential equations, 247, 2, 1120-1155, (2009) · Zbl 1183.35053
[9] Pata, V.; Squassina, M., On the strongly damped wave equation, Comm. math. phys., 253, 511-533, (2005) · Zbl 1068.35077
[10] Pata, V.; Zelik, S., Smooth attractors for strongly damped wave equation, Nonlinearity, 19, 1495-1506, (2006) · Zbl 1113.35023
[11] Cheban, D.N., Global attractors of non-autonomous dissipative dynamical systems, (2004), World Scientific Publishing Co. Pvt. Ltd. · Zbl 1098.37002
[12] Chepyzhov, V.V.; Vishik, M.I., ()
[13] Kloeden, P.E., Pullback attractors of nonautonomous semidynamical system, Stoch. dyn., 3, 1, 101-112, (2003) · Zbl 1029.37010
[14] Sell, G.R., Nonautonomous differential equations and dynamical systems, Trans. amer. math. soc., 127, 241-283, (1967) · Zbl 0189.39602
[15] Carvalho, A.N.; Nascimento, M.J., Singularly non-autonomous semilinear parabolic problems with critical exponents, Discrete contin. dyn. syst. ser. S, 2, 3, 449-471, (2009) · Zbl 1180.35320
[16] Sobolevskiĭ, P.E., Equations of parabolic type in a Banach space, (), 162 · Zbl 0278.34054
[17] Caraballo, T.; Carvalho, A.N.; Langa, J.A.; Rivero, F., Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear anal., 72, 1967-1976, (2010) · Zbl 1195.34086
[18] Caraballo, T.; Carvalho, A.N.; Langa, J.A.; Rivero, F., Some gradient-like non-autonomous evolution processes, Internat. J. bifur. chaos, 20, 9, (2010)
[19] Carvalho, A.N.; Langa, J.A.; Robinson, J.C., Lower semicontinuity of attractors for non-autonomous dynamical systems, Ergodic theory dynam. systems, 29, 6, 1765-1780, (2009) · Zbl 1181.37016
[20] Carvalho, A.N.; Langa, J.A., Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds, J. differential equations, 233, 622-653, (2007) · Zbl 1122.34038
[21] Carvalho, A.N.; Langa, J.A.; Robinson, J.C., On the continuity of pullback attractors for evolution processes, Nonlinear anal., 71, 1812-1824, (2009) · Zbl 1175.37078
[22] Hirosawa, F.; Wirth, J., Generalised energy conservation law for wave equations with variable propagation speed, J. math. anal. appl., 358, 56-74, (2009) · Zbl 1173.35572
[23] Nishihara, K.; Zhai, J., Asymptotic behavior of solutions for time dependent damped wave equations, J. math. anal. appl., 360, 412-421, (2009) · Zbl 1180.35111
[24] Henry, D., Geometry theory of semilinear parabolic equations, (1981), Springer-Verlag
[25] Hale, J.K., Asymptotic behavior of dissipative system, (1989), American Mathematical Society
[26] Arrieta, J.; Carvalho, A.N.; Hale, J.K., A damped hyperbolic equation with critical exponent, Comm. partial differential equations, 17, 5-6, 841-866, (1992) · Zbl 0815.35067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.