×

zbMATH — the first resource for mathematics

Numerical study of the influence of the atmospheric pressure on the heat and mass transfer rates of desiccant wheels. (English) Zbl 1211.80025
Summary: A study was conducted to investigate the influence of the atmospheric pressure, from 101,325 to 60,000 Pa (corresponding from 0 to 4217 m of altitude), on the heat and mass transfer rates of desiccant wheels (hygroscopic matrix of silica gel RD), assuming fixed-mass airflow rates and fixed inlet states for the process and regeneration airflows, defined by the respective inlet temperatures and water vapour contents. The results show a generic reduction of the heat and mass transfer rates as the atmospheric pressure decreases, an effect that is more pronounced for short channel wheels and high airflow rates. Correlations based on the numerical results are presented for the correction of the heat and mass transfer rates when the desiccant wheels are operating at non-standard atmospheric pressure.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
76S05 Flows in porous media; filtration; seepage
76T10 Liquid-gas two-phase flows, bubbly flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Maclaine-Cross, I. L.; Banks, P. J.: Coupled heat and mass transfer in regenerators-prediction using an analogy with heat transfer, Int. J. Heat mass transfer 15, No. 6, 1225-1242 (1972)
[2] Banks, P. J.: Prediction of heat and mass regenerator performance using nonlinear analogy method: part 1 – basis, ASME J. Heat transfer 107, 222-229 (1985)
[3] Banks, P. J.: Prediction of heat and mass regenerator performance using nonlinear analogy method: part 2 – comparison of methods, ASME J. Heat transfer 107, 230-238 (1985)
[4] Pesaran, A. A.; Heiden, R.: The influence of altitude on the performance of desiccant-cooling systems, Energy 19, No. 11, 1165-1179 (1994)
[5] Dai, Y. J.; Wang, R. Z.; Zhang, H. F.: Parameter analysis to improve rotary desiccant dehumidification using a mathematical model, Int. J. Therm. sci. 40, No. 4, 400-408 (2001)
[6] Cejudo, J. M.; Moreno, R.; Carrillo, A.: Physical and neural network models of a silica gel desiccant wheel, Energy build. 34, No. 8, 837-844 (2002)
[7] Zhang, X. J.; Dai, Y. J.; Wang, R. Z.: A simulation study of heat and mass transfer in a honeycomb rotary desiccant dehumidifier, Appl. therm. Eng. 23, No. 8, 989-1003 (2003)
[8] Golubovic, M. N.; Worek, W. M.: Influence of elevated pressure on sorption in desiccant wheels, Numer. heat transfer A 45, No. 9, 869-886 (2004)
[9] Harshe, Y. M.; Utikar, R. P.; Ranade, V. V.; Pahwa, D.: Modeling of rotary desiccant wheels, Chem. eng. Technol. 28, No. 12, 1473-1479 (2005)
[10] Gao, Z.; Mei, V. C.; Tomlinson, J. J.: Theoretical analysis of dehumidification process in a desiccant wheel, Heat mass transfer 41, No. 11, 1033-1042 (2005)
[11] Elsayed, S. S.; Hamamoto, Y.; Akisawa, A.; Kashiwagi, T.: Analysis of an air cycle refrigerator driving air conditioning system integrated desiccant system, Int. J. Refrigeration 29, No. 2, 219-228 (2006)
[12] Chung, J. D.; Lee, D. Y.: Effect of desiccant isotherm on the performance of desiccant wheel, Int. J. Refrigeration 32, No. 4, 720-726 (2009)
[13] Chung, J. D.; Lee, D. Y.; Yoon, S. M.: Optimization of desiccant wheel speed and area ratio of regeneration to dehumidification as a function of regeneration temperature, Solar energy 83, No. 5, 625-635 (2009)
[14] C.R. Ruivo, Modelação numérica dos fenómenos de transferência de calor e de massa em rodas higroscópicas, Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, 2005 (in Portuguese).
[15] Sphaier, L. A.; Worek, W. M.: Comparisons between 2-D and 1-D formulations of heat and mass transfer in rotary regenerators, Numer. heat transfer B 49, No. 3, 223-237 (2006)
[16] Ruivo, C. R.; Costa, J. J.; Figueiredo, A. R.: Analysis of simplifying assumptions for the numerical modeling of the heat and mass transfer in a porous desiccant medium, Numer. heat transfer A 49, No. 9, 851-872 (2006)
[17] Ruivo, C. R.; Costa, J. J.; Figueiredo, A. R.: On the validity of lumped capacitance approaches for the numerical prediction of heat and mass transfer in desiccant airflow systems, Int. J. Therm. sci. 47, No. 3, 282-292 (2008)
[18] Niu, J. L.; Zhang, L. Z.: Effects of wall thickness on the heat and moisture transfer in desiccant wheels for air dehumidification and enthalpy recovery, Int. commun. Heat mass transfer 29, No. 2, 255-268 (2002)
[19] Zhang, L. Z.; Niu, J. L.: Performance comparisons of desiccant wheels for air dehumidification and enthalpy recovery, Appl. therm. Eng. 22, No. 2, 1347-1367 (2002)
[20] Sphaier, L. A.; Worek, W. M.: Analysis of heat and mass transfer in porous sorbents used in rotary regenerators, Int. J. Heat mass transfer 47, No. 14-16, 3415-3430 (2004) · Zbl 1079.76653 · doi:10.1016/j.ijheatmasstransfer.2004.01.016
[21] Ruivo, C. R.; Costa, J. J.; Figueiredo, A. R.: On the behaviour of hygroscopic wheels: part I – channel modelling, Int. J. Heat mass transfer 50, No. 23 – 24, 4812-4822 (2007) · Zbl 1183.76663 · doi:10.1016/j.ijheatmasstransfer.2007.03.003
[22] Ruivo, C. R.; Costa, J. J.; Figueiredo, A. R.: On the behaviour of hygroscopic wheels: part II – rotor performance, Int. J. Heat mass transfer 50, No. 23-24, 4823-4832 (2007) · Zbl 1183.76664 · doi:10.1016/j.ijheatmasstransfer.2007.03.004
[23] A. Pesaran, Moisture transport in silica gel particle beds, Ph.D. Thesis, University of California, Los Angels, 1983.
[24] A.F. Mills, Heat and Mass Transfer, Irwin, 1995. · Zbl 0861.35082
[25] Patankar, S. V.: Numerical heat transfer and fluid flow, (1980) · Zbl 0521.76003
[26] &ccedil, Y.; Engel: Heat transfer – A practical approach, (1998)
[27] Ruivo, C. R.; Costa, J. J.; Figueiredo, A. R.: Numerical study of the behavior of an elementary desiccant layer of a hygroscopic rotor, Numer. heat transfer A 53, No. 10, 1037-1053 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.