×

zbMATH — the first resource for mathematics

On the explicit analytic solutions of an Oldroyd 6-constant fluid. (English) Zbl 1211.76009
Summary: This paper deals with some steady unidirectional flows of an Oldroyd 6-constant fluid. The modelled differential equation is non-linear and proposes some new mathematical difficulties. The governing non-linear equation for the steady flow of an Oldroyd 6-constant fluid is different than from the Newtonian fluid and involves the non-Newtonian features. Moreover, the exact analytic solutions are obtained for Couette, Poiseuille and generalized Couette flows for all values of non-Newtonian parameters. The homotopy analysis method (HAM) is used to construct the solutions.

MSC:
76A05 Non-Newtonian fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rajagopal, K.R., A note on unsteady unidirectional flows of a non-Newtonian fluids, Int. J. non-linear mech., 17, 369-373, (1982) · Zbl 0527.76003
[2] Rajagopal, K.R., On the creeping flow of second order fluid, J. non-Newtonian fluid mech., 48, 239-246, (1984) · Zbl 0568.76015
[3] Hayat, T.; Asghar, S.; Siddiqui, A.M., Periodic unsteady flows of a non-Newtonian fluid, Acta mech., 131, 169-175, (1998) · Zbl 0939.76002
[4] Siddiqui, A.M.; Hayat, T.; Asghar, S., Periodic flows of a non-Newtonian fluid between two parallel plates, Int. J. non-linear mech., 34, 895-899, (1999) · Zbl 1006.76004
[5] Hayat, T.; Asghar, S.; Siddiqui, A.M., On the moment of a plane disk in a non-Newtonian fluid, Acta mech., 136, 125-131, (1999) · Zbl 0934.76003
[6] Hayat, T.; Asghar, S.; Siddiqui, A.M., Some non steady flows of a non-Newtonian fluid, Int. J. eng. sci., 38, 337-346, (2000) · Zbl 1210.76015
[7] Hayat, T.; Nadeem, S.; Asghar, S.; Siddiqui, A.M., Fluctuating flow of a third grade fluid on a porous plate in a rotating medium, Int. J. non-linear mech., 36, 901-916, (2001) · Zbl 1345.76099
[8] Hayat, T.; Wang, Y.; Hutter, K., Flow of a fourth grade fluid, Math. models meth. appl. sci., 12, 6, 797-811, (2002) · Zbl 1023.76005
[9] Hayat, T.; Hutter, K.; Asghar, S.; Siddiqui, A.M., MHD flows of an Oldroyd-B fluid, Math. comput. modell., 36, 987-995, (2002) · Zbl 1026.76060
[10] Asghar, S.; Hayat, T.; Siddiqui, A.M., Moving boundary in a non-Newtonian fluid, Int. J. non-linear mech., 37, 75-80, (2002) · Zbl 1116.76310
[11] Dunn, J.E.; Rajagopal, K.R., Fluids of differential type: critical review and thermodynamic analysis, Int. J. eng. sci., 33, 689-729, (1995) · Zbl 0899.76062
[12] Rajagopal, K.R., Mechanics of non-Newtonian fluid, (), 129-162 · Zbl 0818.76003
[13] Oldroyd, J.G., On the formulation of rheological equations of state, Proc. R. sci. lond. A, 200, 523-541, (1950) · Zbl 1157.76305
[14] Rajagopal, K.R.; Bhatnagar, R.K., Exact solutions for some simple flows of an Oldroyd-B fluid, Acta mech., 113, 233-239, (1995) · Zbl 0858.76010
[15] Hayat, T.; Siddiqui, A.M.; Asghar, S., Some simple flows of an Oldroyd-B fluid, Int. J. eng. sci., 39, 135-147, (2001)
[16] C. Fetecau, C. Fetecau, The first problem of Stokes for an Oldroyd-B fluid, Int. J. Non-Linear Mech., in press · Zbl 1287.76044
[17] Baris, S., Flow of an Oldroyd 6-constant fluid between intersecting plane, one of which is moving, Acta mech., 147, 125-135, (2001) · Zbl 0984.76005
[18] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992
[19] Liao, S.J., An explicit, totally analytic approximation of Blasius viscous flow problems, Int. J. non-linear mech., 34, 4, 759-778, (1999) · Zbl 1342.74180
[20] Liao, S.J., A simple way to enlarge the convergence region of perturbation approximations, Int. J. non-linear dyn., 19, 2, 93-110, (1999)
[21] Liao, S.J., A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate, J. fluid mech., 385, 101-128, (1999) · Zbl 0931.76017
[22] Liao, S.J.; Campo, A., Analytic solutions of the temperature distribution in Blasius viscous flow problems, J. fluid mech., 453, 411-425, (2002) · Zbl 1007.76014
[23] Liao, S.J., An analytic approximation of the drag coefficient for the viscous flow past a sphere, Int. J. non-linear mech., 37, 1-18, (2002) · Zbl 1116.76335
[24] Liao, S.J., An explicit analytic solution to the thomas – fermi equation, Appl. math. comput., 144, 433-444, (2003)
[25] Liao, S.J., An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude, Int. J. non-linear mech., 38, 8, 1173-1183, (2003) · Zbl 1348.74225
[26] Wang, C.; Zhu, J.M.; Liao, S.J.; Pop, I., On the explicit analytic solution of cheng – chang equation, Int. J. heat mass trans., 46, 10, 1855-1860, (2003) · Zbl 1029.76050
[27] Liao, S.J., A uniformly valid analytic of 2D viscous flow past a semi-infinite flat plate, J. fluid mech., 385, 101-128, (1999) · Zbl 0931.76017
[28] Ayub, M.; Rasheed, A.; Hayat, T., Exact flow of a third grade fluid past a porous plate using homotopy analysis method, Int. J. eng. sci., 41, 18, 2091-2103, (2003) · Zbl 1211.76076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.