×

zbMATH — the first resource for mathematics

Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. (English) Zbl 1211.74199

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Software:
Gmsh
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adalsteinsson, D.; Sethian, J.A., The fast construction of extension velocities in level set methods, Journal of computational physics, 148, 1, 2-22, (1999) · Zbl 0919.65074
[2] Baker, T.J., Triangulations, mesh generation and point placement strategies, (), 101-115
[3] Baker, T.J., Mesh movement and metamorphosis, Engineering with computers, 18, 3, 188-198, (2002)
[4] T.J. Baker, J.C. Vassberg, Tetrahedral mesh generation and optimization, in: Proceedings of the 6th International Conference on Numerical Grid Generation, 1998, pp. 337-349
[5] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, International journal for numerical methods in engineering, 45, 5, 601-620, (1999) · Zbl 0943.74061
[6] Bonnet, M.; Maier, G.; Polizzotto, G., Symmetric Galerkin boundary element method, Applied mechanics review, 51, 669-704, (1998)
[7] Carter, B.J.; Wawrzynek, P.A.; Ingraffea, A.R., Automated 3-d crack growth simulation, International journal for numerical methods in engineering, 47, 229-253, (2000) · Zbl 0988.74079
[8] Chopp, D.L., Some improvements of the fast marching method, SIAM journal on scientific computing, 23, 1, 230-244, (2001) · Zbl 0991.65105
[9] Dai, D.N.; Hills, D.A.; Nowell, D., Modelling of growth of 3-dimensional cracks by a continuous distribution of dislocation loops, Computational mechanics, 19, 538-544, (1997) · Zbl 1031.74520
[10] Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T., Arbitrary cracks and holes with the extended finite element method, International journal for numerical methods in engineering, 48, 12, 1741-1760, (2000) · Zbl 0989.74066
[11] Dhondt, G., Automatic 3-D mode I crack propagation calculations with finite elements, International journal for numerical methods in engineering, 41, 4, 739-757, (1998) · Zbl 0902.73072
[12] Duarte, C.A.; Babuška, I.; Oden, J.T., Generalized finite element methods for three dimensional structural mechanics problems, Computers and structures, 77, 215-232, (2000)
[13] Duarte, C.A.; Hamzeh, O.N.; Liszka, T.J.; Tworzydlo, W.W., The element partition method for the simulation of three-dimensional dynamic crack propagation, Computer methods in applied mechanics and engineering, 190, 15-17, 2227-2262, (2001) · Zbl 1047.74056
[14] Fleming, M.; Chu, Y.A.; Moran, B.; Belytschko, T., Enriched element-free Galerkin methods for crack tip fields, International journal for numerical methods in engineering, 40, 1483-1504, (1997)
[15] Gerstle, W.H.; Ingraffea, A.R.; Perucchio, R., Three-dimensional fatigue crack propagation analysis using the boundary element method, International journal of fatigue, 10, 3, 187-192, (1988)
[16] Gosz, M.; Dolbow, J.; Moran, B., Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks, International journal of solids and structures, 35, 1763-1783, (1998) · Zbl 0936.74057
[17] Gravouil, A.; Moës, N.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and the level sets–part II: level set update, International journal for numerical methods in engineering, 53, 11, 2569-2586, (2002) · Zbl 1169.74621
[18] Hills, D.A.; Kelly, P.A.; Dai, D.N.; Korsunsky, A.M., Solution of crack problems: the distributed dislocation technique, (1996), Kluwer Academic Publishers Dordrecht, The Netherlands · Zbl 0874.73001
[19] Ji, H.; Chopp, D.; Dolbow, J.E., A hybrid extended finite element/level set method for modeling phase transformations, International journal for numerical methods in engineering, 54, 8, 1209-1233, (2002) · Zbl 1098.76572
[20] Melenk, J.M.; Babuška, I., The partition of unity finite element method: basic theory and applications, Computer methods in applied mechanics and engineering, 139, 289-314, (1996) · Zbl 0881.65099
[21] Mi, Y.; Aliabadi, M.H., Three-dimensional crack growth simulations using BEM, Computers and structures, 52, 5, 871-878, (1994) · Zbl 0900.73900
[22] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, International journal for numerical methods in engineering, 46, 1, 131-150, (1999) · Zbl 0955.74066
[23] Moës, N.; Gravouil, A.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets. part I: mechanical model, International journal for numerical methods in engineering, 53, 11, 2549-2568, (2002) · Zbl 1169.74621
[24] Moran, B.; Shih, C.F., Crack tip and associated domain integrals from momentum and energy balance, Engineering fracture mechanics, 27, 6, 615-641, (1987)
[25] Nikishkov, G.P.; Atluri, S.N., Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack by the ‘equivalent domain integral method’, International journal for numerical methods in engineering, 24, 1801-1821, (1987) · Zbl 0625.73118
[26] Nishioka, T.; Atluri, S.N., Analytical solution for embedded cracks, and finite element alternating method for elliptical surface cracks, subjected to arbitrary loading, Engineering fracture mechanics, 17, 247-268, (1983)
[27] Oden, J.T.; Duarte, C.A.; Zienkiewicz, O.C., A new cloud-based hp finite element method, Computer methods in applied mechanics and engineering, 153, 1-2, 117-126, (1998) · Zbl 0956.74062
[28] Osher, S.; Sethian, J.A., Fronts propagating with curvature-dependent speed: algorithms based on hamilton – jacobi formulations, Journal of computational physics, 79, 1, 12-49, (1988) · Zbl 0659.65132
[29] Paris, P.C.; Gomez, M.P.; Anderson, W.E., A rationale analytic theory of fatigue, The trend in engineering, 13, 1, 9-14, (1961)
[30] J.-F. Remacle, C. Geuzaine, Gmsh finite element grid generator, 1998. Available from < _>
[31] Riddell, W.T.; Ingraffea, A.R.; Wawrzynek, P.A., Experimental observations and numerical predictions of three-dimensional fatigue crack propagation, Engineering fracture mechanics, 58, 4, 293-310, (1997)
[32] Sethian, J.A., A marching level set method for monotonically advancing fronts, Proceedings of the national Academy of sciences, 93, 4, 1591-1595, (1996) · Zbl 0852.65055
[33] Sethian, J.A., Fast marching methods, SIAM review, 41, 2, 199-235, (1999) · Zbl 0926.65106
[34] Sethian, J.A., Level set methods & fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, (1999), Cambridge University Press Cambridge, UK · Zbl 0973.76003
[35] Stolarska, M.; Chopp, D.L.; Moës, N.; Belytschko, T., Modeling crack growth by level sets and the extended finite element method, International journal for numerical methods in engineering, 51, 8, 943-960, (2001) · Zbl 1022.74049
[36] Strouboulis, T.; Babuška, I.; Copps, K., The design and analysis of the generalized finite element method, Computer methods in applied mechanics and engineering, 181, 1-3, 43-69, (2000) · Zbl 0983.65127
[37] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method, Computer methods in applied mechanics and engineering, 190, 32-33, 4081-4193, (2001) · Zbl 0997.74069
[38] Sukumar, N.; Chopp, D.L.; Moës, N.; Belytschko, T., Modeling holes and inclusions by level sets in the extended finite element method, Computer methods in applied mechanics and engineering, 190, 46-47, 6183-6200, (2001) · Zbl 1029.74049
[39] Sukumar, N.; Chopp, D.L.; Moran, B., Extended finite element method and fast marching method for three dimensional fatigue crack propagation, Engineering fracture mechanics, 70, 1, 29-48, (2003)
[40] Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T., Extended finite element method for three-dimensional crack modeling, International journal for numerical methods in engineering, 48, 11, 1549-1570, (2000) · Zbl 0963.74067
[41] Vijayakumar, K.; Atluri, S.N., An embedded elliptical flaw in an infinite solid, subject to arbitrary crack-face tractions, Journal of applied mechanics, 48, 88-96, (1981) · Zbl 0463.73094
[42] Xu, G.; Ortiz, M., A variational boundary integral equation method for the analysis of 3d cracks of arbitrary geometry modelled as continuous distribution of dislocation loops, International journal for numerical methods in engineering, 31, 3675-3701, (1993) · Zbl 0796.73067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.