×

zbMATH — the first resource for mathematics

Schwarz, Wallace, and Rissanen: intertwining themes in theories of model selection. (English) Zbl 1211.62007

MSC:
62A99 Foundational topics in statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akaike H., Second International Symposium on Information Theory pp 267– (1973)
[2] DOI: 10.1109/TAC.1974.1100705 · Zbl 0314.62039 · doi:10.1109/TAC.1974.1100705
[3] DOI: 10.1093/biomet/66.2.237 · Zbl 0407.62064 · doi:10.1093/biomet/66.2.237
[4] DOI: 10.1109/TIT.1972.1054753 · Zbl 0227.94011 · doi:10.1109/TIT.1972.1054753
[5] DOI: 10.1093/biomet/65.1.39 · Zbl 0371.62043 · doi:10.1093/biomet/65.1.39
[6] DOI: 10.1162/neco.1997.9.2.349 · Zbl 0870.62006 · doi:10.1162/neco.1997.9.2.349
[7] DOI: 10.1109/18.86996 · Zbl 0743.62003 · doi:10.1109/18.86996
[8] DOI: 10.1109/18.720554 · Zbl 0933.94013 · doi:10.1109/18.720554
[9] R. Baxter (1996 ). The likelihood principle and MML estimators. InProceedings of the International Conference in Information, Statistics, and Induction in Science, pp.292 -303 . World Scientific. Available at http://www.cs.monash.edu.au/-rohan/PAPERS/Ip.ps.
[10] R. Baxter (December 1996 ). Minimum Message Length Inductive Inference: Theory and Applications. Ph.D. Dissertation , Department of Computer Science, Monash University, Clayton, Australia.
[11] R. Baxter, and J. Oliver (1994 ). MDL and MML: Similarities and differences (introduction to Minimum Encoding Inference-part III). Technical Report 207, Department of Computer Sciences, Monash University, avialable at http://www.cs.monash.edu.au/-rohan/PAPERS/intro.3.ps.
[12] DOI: 10.1023/A:1008928315401 · doi:10.1023/A:1008928315401
[13] Berger J.O., Bayesian Statistics 4 pp 35– (1992)
[14] Bernardo J.M., J.R. Statist. Soc. B 41 (2) pp 113– (1979)
[15] DOI: 10.1016/S0378-3758(97)00074-8 · doi:10.1016/S0378-3758(97)00074-8
[16] DOI: 10.1109/TIT.1972.1054855 · Zbl 0247.94017 · doi:10.1109/TIT.1972.1054855
[17] DOI: 10.1006/jmps.1999.1277 · Zbl 1047.62501 · doi:10.1006/jmps.1999.1277
[18] Buraham K.P., Model selection and inference: a practical information-theoretic approch (1998) · doi:10.1007/978-1-4757-2917-7
[19] Carlin B., J.R. Statist. Soc. B 57 (3) pp 473– (1995)
[20] DOI: 10.1016/S0378-3758(97)00115-8 · Zbl 1067.62504 · doi:10.1016/S0378-3758(97)00115-8
[21] Chaitin G., Alogrithmic Information Theory (1987) · Zbl 0655.68003 · doi:10.1017/CBO9780511608858
[22] Chaitin G., The Limits of Mathematics: A Course on Information Theory and the Limits of Formal Reasoning (1997) · Zbl 1024.68033
[23] DOI: 10.1109/18.705576 · Zbl 0955.62013 · doi:10.1109/18.705576
[24] DOI: 10.1023/A:1008936501289 · doi:10.1023/A:1008936501289
[25] DOI: 10.1109/18.54897 · Zbl 0709.62008 · doi:10.1109/18.54897
[26] DOI: 10.1016/0378-3758(94)90153-8 · Zbl 0820.62006 · doi:10.1016/0378-3758(94)90153-8
[27] Conway J., Sphere Packings, Lattices and Groups (1993) · doi:10.1007/978-1-4757-2249-9
[28] Cover T., Elements of Information Theory (1991) · Zbl 0762.94001 · doi:10.1002/0471200611
[29] Dawid A.P., J.R. Statist. Soc. A 147 (2) pp 278– (1984)
[30] Dawid A.P., Bayesian Statistics 4 pp 109– (1992)
[31] Dowe D., Seventh International Workshop on Algorithmic Learning Theory pp 213– (1996) · Zbl 1184.62085 · doi:10.1007/3-540-61863-5_48
[32] Dowe D., Proceedings of the Fifteenth International Workshop on Maximum Entropy and Bayesian Methods pp 51– (1996) · doi:10.1007/978-94-011-5430-7_6
[33] Draper D., J.R. Statist. Soc. B 57 (1) pp 45– (1995)
[34] DOI: 10.1109/18.761287 · Zbl 0959.62006 · doi:10.1109/18.761287
[35] Gelman A., Statistica Sinica 6 (4) pp 733– (1996)
[36] Ghosh J.K, Bayesian Statistics 4 pp 195– (1992)
[37] DOI: 10.1093/biomet/82.4.711 · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711
[38] Green P., Encyclopedia of Statistical Sciences 2 (1998)
[39] DOI: 10.1109/18.850712 · Zbl 1014.62128 · doi:10.1109/18.850712
[40] P. Grunwald (1998 ). The Minimum Description Length Principle and Reasoning under uncertainty. PhD. Thesis , Univ. of Amsterdam, The Netherlands. Avialable as ILLC Dissertation Seriew 1998-03; see http://www.robotics.standford.edu./grunwald.
[41] Grunwald P., Proceedings of the Fourteenth International Conference on Uncertainty in Artifical Intelligence (UAI’98) pp 183– (1998)
[42] Gruhwald P., J. Math. Psychology 44 (1) pp 13– (2000)
[43] DOI: 10.1093/biomet/75.4.705 · Zbl 0661.62025 · doi:10.1093/biomet/75.4.705
[44] M. Hansen, and B. Yu (1998 ). Model selection and the principle of minimum descrition length. Submitted to the. J. Amarican Statist. Assoc., Avialable at cm-bell-labs.com/who/cocteau/papers/postscript/main.ps.gz.
[45] Heckerman D., Machine Learning 203 (3) pp 197– (1995)
[46] DOI: 10.1214/ss/1009212519 · Zbl 1059.62525 · doi:10.1214/ss/1009212519
[47] E. Hook, W. Redfearn, and R. Regal (1995 ). Two pi or not two pi? Comparisions of various methods of model selection and adjustment for model uncertainty in simulation of capture-recapture estimates used in epidemiology. In Workshop on Model Uncertainty and Model Robustness, Bath, England, Abstracts available at http://www.isds.duke.edu/conferences/bath/abstracts.html.
[48] DOI: 10.1111/1467-9868.00125 · Zbl 0909.62039 · doi:10.1111/1467-9868.00125
[49] Jefferys H., Theory of Probability (1939)
[50] Jeffreys H., Proceedings of the Royal Society of London A. 186 pp 453– (1946)
[51] Jeffreys H., Theory of Probability (1967) · Zbl 0171.22502
[52] Knotkanen P., On predictive distributions and Nayesian networks Statistics and Computing 10 (1) pp 39– (2000)
[53] Lanterman A.D., Automatic Target Recognition VIII pp 375– (1998) · doi:10.1117/12.323855
[54] A.D. Lanterman (1998 ). Modeling Clutter and Target Signatures for Pattern-Theoretic Understantind of Infrared Scenes. D. Sc. Dissertation, Dept. of Electrical Engineering. Sever Institute of Technology, Washington Univ., St. Louis, MO.
[55] DOI: 10.1117/1.602512 · doi:10.1117/1.602512
[56] Lee T.C.M., Internat. Statist. Review 69 pp 169– (2001)
[57] Li M., An Introduction of Kolmogorov Complexity and Its Applications (1997) · doi:10.1007/978-1-4757-2606-0
[58] Liang Z., IEEE Trans. Medical Imaging 39 (4) pp 1126– (1992)
[59] DOI: 10.1006/cviu.1996.0510 · doi:10.1006/cviu.1996.0510
[60] Linhart H., Model Selection (1997) · Zbl 0665.62003
[61] J. Liu, and P. Moulin (1997 ). Complexity-regularized image denoising. InProceedings of the 1997 IEEE International Conference on Image Processing, Chicago, IL. Avialable at http://www.ifp.uiuc.edu/moulin/paper/html.
[62] DOI: 10.1121/1.402504 · doi:10.1121/1.402504
[63] DOI: 10.1016/S0167-7152(98)00294-6 · Zbl 1087.62507 · doi:10.1016/S0167-7152(98)00294-6
[64] D. Michal (1993 ). Multiple Target Detection for an Antenna Array. D.Sc. Dissertation, Department of Electrical Engineering, School of Engineering and Applied Science, Washington Unviersity, St. Louis, MO.
[65] DOI: 10.1109/18.761332 · Zbl 0945.94004 · doi:10.1109/18.761332
[66] O’Hagan A., J.R. Statist. Soc. B 49 (3) pp 256– (1987)
[67] J. Oliver, and R. Baxter (1994 ). MML and Bayesianism: Similarities and differences (introduction to Minimum Encoding Inference-part II). Technical Report 206, Department of Computer Sciences, Monash Unviersity. Avialable at http://www.cs.monash.edu.au/jono/TechReports/intro.2.ps.
[68] J. Oliver, and D. Hand (1994 ). Introduction to minimum encoding inference. Technical Report 205, Department of Computer Science, Monash University. Avialable at http://www.cs.monash.edu.au/jono/Open.Uni/TR4-94.ps.
[69] O’Sullivan J.A., Codes Curves, and Signals: Common Threads in Communication pp 173– (1998) · doi:10.1007/978-1-4615-5121-8_13
[70] Patrick J., Archaeoastronomy in the Old World pp 231– (1982) · doi:10.1017/CBO9780511898310.016
[71] Polya G., Problems and Theorens in analysis I. (1972)
[72] Poskitt D., J.R. Statist. Soc. B 49 (2) pp 199– (1987)
[73] DOI: 10.1109/18.661521 · Zbl 0902.62013 · doi:10.1109/18.661521
[74] Raftery A., Markov Chain Monte Carlo in Practice pp 381– (1996)
[75] DOI: 10.1111/1467-9868.00095 · doi:10.1111/1467-9868.00095
[76] DOI: 10.1016/0005-1098(78)90005-5 · Zbl 0418.93079 · doi:10.1016/0005-1098(78)90005-5
[77] Rissanen J., Ann. Statist 11 (2) pp 416– (1983)
[78] DOI: 10.1109/TIT.1984.1056936 · Zbl 0574.62003 · doi:10.1109/TIT.1984.1056936
[79] Rissanen J., Ann. Statis. 14 (3) pp 1080– (1986)
[80] Rissamen J., Encyclopedia of Statistical Sciences 5 pp 523– (1987)
[81] Rissanen J., J.R. Statist. Soc. B 49 (3) pp 223– (1987)
[82] Rissanen J., Stochastic Complexity in Statistical Inquiry (1989)
[83] Rissanen J., Workshop on Model Uncertainty and Model Robustness (1995)
[84] Rissanen J., Computatinal Learning Theory: Second European Conference, Euro COLT’95, Barcelona, Spain pp 196– (1995)
[85] J. Rissanen (1996 ). Fisher information and stochastic complexity . IEEE Trans. Information Theory. Avialable at http://www.cs.tut.fit/rissanen/papers/denoise.ps. · Zbl 0856.94006
[86] J. Rissnen (2000 ). Strong optimality of the normalized ML models universal codes. Submitted to IEEE Trans. Information Theory. Avialable at http://www.cs.tut.fit/rissanen/papers/bound.ps.
[87] J. Rissanen, T. Speed, and B. Yu (1992 ). Density estimation by stochastic complexity. IEEE Trans. Information Theory. 315 -323 . · Zbl 0743.62004
[88] Rohman M.S., Commun. Statist.-Simul. Computation 29 (1) pp 51– (1999)
[89] Sakamoto Y., Categorical Data Analysis by AIC (1992)
[90] Schwarz G., Ann. Statist. 6 (2) pp 461– (1978)
[91] DOI: 10.2307/2335091 · doi:10.2307/2335091
[92] Shtarkov Y., Problems of Information Transmission. 23 (3) pp 3– (1987) · Zbl 0923.94027
[93] Shun Z., J. R. Statist. Soc, B 57 (4) pp 749– (1995)
[94] DOI: 10.1109/18.857801 · Zbl 1007.94536 · doi:10.1109/18.857801
[95] Singer A., IEEE Trans. Information Theory. 47 (10) pp 2685– (1999)
[96] DOI: 10.1109/ICASSP.1990.116044 · doi:10.1109/ICASSP.1990.116044
[97] DOI: 10.1023/A:1008940618127 · doi:10.1023/A:1008940618127
[98] Stone M., J.R. Statist. Soc. B 39 pp 44– (1977)
[99] Stone M., J. R. Statis. Soc. B 41 (2) pp 276– (1977)
[100] DOI: 10.1109/18.605579 · Zbl 0873.62007 · doi:10.1109/18.605579
[101] DOI: 10.1093/biomet/74.3.636 · Zbl 0628.62032 · doi:10.1093/biomet/74.3.636
[102] P. Vianyi, and M. Li (1996 ). Ideal MDL and its relation toBayesianism. Proc. ISIS: Information, Statistics and Induction in Science, pp.282 -291 . Singapore: World Scientific.
[103] DOI: 10.1109/18.825807 · Zbl 1013.68096 · doi:10.1109/18.825807
[104] Wallace C., The Computer Journal 11 (2) pp 195– (1968) · Zbl 0164.46208 · doi:10.1093/comjnl/11.2.185
[105] DOI: 10.1093/comjnl/42.4.270 · Zbl 0946.68062 · doi:10.1093/comjnl/42.4.270
[106] DOI: 10.1023/A:1008992619036 · doi:10.1023/A:1008992619036
[107] Wallace C.S., J.R,. Statist. Soc. 49 (3) pp 241– (1987)
[108] Wallace C., J.R. Statist. Soc. B 49 (2) pp 262– (1987)
[109] Wallace C., J.R. Statist. Soc. B 54 (1) pp 195– (1992)
[110] DOI: 10.1006/jmps.1999.1278 · Zbl 0946.62032 · doi:10.1006/jmps.1999.1278
[111] Wax M., IEEE Trans. ASSP 33 (2) pp 387– (1985)
[112] DOI: 10.1109/18.650993 · Zbl 0949.62041 · doi:10.1109/18.650993
[113] DOI: 10.1109/TIT.1982.1056490 · Zbl 0476.94008 · doi:10.1109/TIT.1982.1056490
[114] Zhang P., Commun. Statist.-Theor. Meth. 22 pp 2765– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.