×

zbMATH — the first resource for mathematics

On fractional iterates of a Brouwer homeomorphism embeddable in a flow. (English) Zbl 1211.37050
The authors give the form of all homeomorphic orientation preserving solutions \(g\) of the functional equation \(g^n = f\), where \(n\) is a positive integer and \(f\) is a given Brouwer homeomorphism of the plane, embeddable in a flow.

MSC:
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andrea, S.A., On homeomorphisms of the plane which have no fixed points, Abh. math. sem. univ. Hamburg, 30, 61-74, (1967) · Zbl 0156.43704
[2] Bhatia, N.P.; Szegö, G.P., Stability theory of dynamical systems, (1970), Springer-Verlag Berlin/Heidelberg/New York · Zbl 0213.10904
[3] Baron, K.; Jarczyk, W., Recent results on functional equations in a single variable, perspectives and open problems, Aequationes math., 61, 1-2, 1-48, (2001) · Zbl 0972.39011
[4] Blokh, A.; Coven, E.; Misiurewicz, M.; Nitecki, Z., Roots of continuous piecewise monotone maps of an interval, Acta math. univ. Comenian. (N.S.), 60, 1, 3-10, (1991) · Zbl 0736.58026
[5] Bogatyi, S., On the nonexistence of iterative roots, Topology appl., 76, 2, 97-123, (1997)
[6] Ciepliński, K.; Zdun, M.C., On a system of Schröder equations on the circle, Internat. J. bifur. chaos appl. sci. engrg., 13, 7, 1883-1888, (2003) · Zbl 1062.39023
[7] Cowen, C.C., Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. amer. math. soc., 265, 1, 69-95, (1981) · Zbl 0476.30017
[8] Elin, M.; Goryainov, V.; Reich, S.; Shoikhet, D., Fractional iteration and functional equations for functions analytic in the unit disk, Comput. methods funct. theory, 2, 2, 353-366, (2002) · Zbl 1062.30026
[9] Goo, Y.H., Square roots of homeomorphisms, J. chungcheong math. soc., 19, 4, 409-415, (2006)
[10] Jarczyk, W., Babbage equation on the circle, Publ. math. debrecen, 63, 3, 389-400, (2003) · Zbl 1052.39019
[11] Jarczyk, W.; Zhang, W., Also set-valued functions do not like iterative roots, Elem. math., 62, 2, 73-80, (2007) · Zbl 1144.39017
[12] Homma, T.; Terasaka, H., On the structure of the plane translation of Brouwer, Osaka J. math., 5, 233-266, (1953) · Zbl 0051.14701
[13] Kaplan, W., Regular curve-families filling the plane I, Duke math. J., 7, 154-185, (1940) · JFM 66.0966.05
[14] Kuczma, M., On the functional equation \(\phi^n(x) = g(x)\), Ann. polon. math., 11, 161-175, (1961) · Zbl 0102.11102
[15] Leśniak, Z., Constructions of fractional iterates of sperner homeomorphisms of the plane, (), 182-192 · Zbl 0914.39022
[16] Leśniak, Z., On an equivalence relation for free mappings embeddeable in a flow, Internat. J. bifur. chaos appl. sci. engrg., 13, 7, 1911-1915, (2003) · Zbl 1056.37057
[17] Leśniak, Z., On boundaries of parallelizable regions of flows of free mappings, Abstr. appl. anal., 2007, (2007), Article ID 31693, 8 pages · Zbl 1146.37026
[18] Leśniak, Z., On a decomposition of the plane for a flow of free mappings, Publ. math. debrecen, 75, 1-2, 191-202, (2009) · Zbl 1194.37037
[19] Leśniak, Z., On fractional iterates of a homeomorphism of the plane, Ann. polon. math., 79, 2, 129-137, (2002) · Zbl 1064.39025
[20] Leśniak, Z., On maximal parallelizable regions of flows of the plane, Int. J. pure appl. math., 30, 2, 151-156, (2006) · Zbl 1106.39023
[21] Leśniak, Z., On parallelizability of flows of free mappings, Aequationes math., 71, 3, 280-287, (2006) · Zbl 1097.39005
[22] Li, L.; Yang, D.; Zhang, W., A note on iterative roots of PM functions, J. math. anal. appl., 341, 2, 1482-1486, (2008) · Zbl 1143.39011
[23] Martin, R.J., Möbius splines are closed under continuous iteration, Aequationes math., 64, 3, 274-296, (2002) · Zbl 1017.65104
[24] McCann, R.C., Planar dynamical systems without critical points, Funkcial. ekvac., 13, 67-95, (1970) · Zbl 0228.54041
[25] Nakayama, H., Limit sets and square roots of homeomorphisms, Hiroshima math. J., 26, 405-413, (1996) · Zbl 0914.54035
[26] Narayaninsamy, T., Fractional iterates for n-dimensional maps, Appl. math. comput., 98, 2-3, 261-278, (1999) · Zbl 1083.39502
[27] Narayaninsamy, T., On the node fractional iterates, Appl. math. comput., 117, 1, 87-102, (2001) · Zbl 1024.39004
[28] Newman, M.H.A., Elements of the topology of plane sets of points, (1951), Cambridge University Press London · Zbl 0045.44003
[29] Shi, Y.G.; Chen, L., Meromorphic iterative roots of linear fractional functions, Sci. China ser. A, 52, 5, 941-948, (2009) · Zbl 1179.30023
[30] Solarz, P., Iterative roots of homeomorphisms possessing periodic points, Ann. acad. pedagog. crac. stud. math., 6, 77-93, (2007) · Zbl 1148.39021
[31] Solarz, P., Iterative roots of some homeomorphisms with a rational rotation number, Aequationes math., 72, 1-2, 152-171, (2006) · Zbl 1104.39018
[32] Solarz, P., On iterative roots of a homeomorphism of the circle with an irrational rotation number, Math. pannon., 13, 1, 137-145, (2002) · Zbl 0997.39014
[33] Solarz, P., On some iterative roots on the circle, Publ. math. debrecen, 63, 4, 677-692, (2003) · Zbl 1050.39027
[34] Zhang, J.; Yang, J.L., Discussion on iterative roots of piecewise monotone functions, Acta math. sinica, 26, 4, 398-412, (1983) · Zbl 0529.39006
[35] Zhang, W., A generic property of globally smooth iterative roots, Sci. China ser. A, 38, 3, 267-272, (1995) · Zbl 0838.39005
[36] Zhang, W., PM functions, their characteristic intervals and iterative roots, Ann. polon. math., 65, 2, 119-128, (1997) · Zbl 0873.39009
[37] Zhang, W.; Zhang, W., Computing iterative roots of polygonal functions, J. comput. appl. math., 205, 1, 497-508, (2007) · Zbl 1120.65132
[38] Zdun, M.C., On iterative roots of homeomorphisms of the circle, Bull. Pol. acad. sci. math., 48, 2, 203-213, (2000) · Zbl 0996.39016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.