Yuan, Jin; Ding, Cunsheng; Wang, Huaxiong; Pieprzyk, Josef Permutation polynomials of the \((x^p - x+\delta)^s+L(x)\). (English) Zbl 1211.11136 Finite Fields Appl. 14, No. 2, 482-493 (2008). In this article the authors prove the equivalence of Kloosterman polynomials of the form \(L_{1,d}\) and permutation polynomials of the form \((x^p -x + \delta )^s + L(x)\) over finite fields \(\mathbb F_{p^m}\) and where \(L(x)\) is a linearized polynomial with coefficients in the finite field \(\mathbb F_p\). They present six classes of permutation polynomials over \(\mathbb F_{2^m}\) of the form \((x^2 +x + \delta )^s + L_c(x)\). Moreover, they describe three classes of permutation polynomials of similar forms over the finite field \(\mathbb F_{3^m}\). Reviewer: Jebrel M. Habeb (Irbid) Cited in 2 ReviewsCited in 40 Documents MSC: 11T06 Polynomials over finite fields Keywords:Permutation polynomials; Kloosterman polynomials PDF BibTeX XML Cite \textit{J. Yuan} et al., Finite Fields Appl. 14, No. 2, 482--493 (2008; Zbl 1211.11136) Full Text: DOI References: [1] Coulter, R.S., On the evaluation of a class of Weil sums in characteristic 2, New Zealand J. math., 28, 171-184, (1999) · Zbl 0979.11055 [2] Helleseth, T.; Zinoviev, V., New Kloosterman sums identities over \(\mathbb{F}_{2^m}\) for all m, Finite fields appl., 9, 187-193, (2003) · Zbl 1081.11077 [3] Hollmann, H.D.L.; Xiang, Q., Kloosterman sum identities over \(\mathbb{F}_{2^m}\), Discrete math., 279, 277-286, (2004) · Zbl 1099.11040 [4] Hollmann, H.D.; Xiang, Q., A class of permutation polynomials of \(\mathbb{F}_{2^m}\) related to dickson polynomials, Finite fields appl., 11, 1, 111-122, (2005) · Zbl 1073.11074 [5] Lidl, R.; Mullen, G.L.; Turnwald, G., Dickson polynomials, (1993), Longman · Zbl 0823.11070 [6] Lidl, R.; Niederreiter, H., Finite fields, Encyclopedia math. appl., vol. 20, (1997), Cambridge Univ. Press Cambridge [7] Yuan, J.; Ding, C., Four classes of permutation polynomials of \(\mathbb{F}_{2^m}\), Finite fields appl., 13, 4, 869-876, (2007) · Zbl 1167.11045 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.