×

zbMATH — the first resource for mathematics

Experimental and numerical study on the occurrence of off-stagnation peak in heat flux for laminar methane/air flame impinging on a flat surface. (English) Zbl 1210.80019
Summary: A combined experimental and numerical study is conducted to investigate the occurrence of an off-stagnation peak for laminar methane/air flame impinging on a flat surface. Experiments are conducted for three tube burners of internal diameter 8 mm, 9.7 mm and 12 mm. Radial heat flux distributions are compared (experimentally) for different burner diameters under identical operating conditions (with firing rates of 0.25 kW, 0.40 kW and 0.50 kW, \(\phi = 1\) and \(H = 40\) mm). An off-stagnation point peak in heat flux is observed for some of the configurations in the present study which is in accordance with the previous findings. This off-stagnation point peak is a function of stand-off distance between the exit plane of the burner and the plate and also the distance between flame-tip and the plate. A satisfactory explanation is presented to explain the existence of this off-stagnation peak with the help of results of numerical simulation carried out with commercial CFD code FLUENT. It is concluded that this off-stagnation peak in heat flux is primarily due to the peak in the axial velocity profile close to the impingement surface.

MSC:
80A25 Combustion
76F25 Turbulent transport, mixing
80M12 Finite volume methods applied to problems in thermodynamics and heat transfer
76M12 Finite volume methods applied to problems in fluid mechanics
80-05 Experimental work for problems pertaining to classical thermodynamics
Software:
FLUENT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baukal, C. E.; Gebhart, B.: A review of flame impingement heat transfer studies – part 1: experimental conditions, Combust. sci. Technol. 104, 339-357 (1995)
[2] Milson, A.; Chigier, N. A.: Studies of methane and methane/air flames impinging on cold plate, Combust. flame 21, 295-305 (1973)
[3] J.R. Rigby, B.W. Webb, An experimental investigation of diffusion flame jet impinging heat transfer, in: Proceedings of ASME/JSME Thermal Engineering Joint Conference, New York, vol. 3, 1995, pp. 117 – 126.
[4] Dong, L. L.; Cheung, C. S.; Leung, C. W.: Combustion optimization of a slot flame jet impingement system, J. inst. Energy 76, 80-88 (2003)
[5] Dong, L. L.; Cheung, C. S.; Leung, C. W.: Heat transfer characteristics of premixed butane/air flame jet impinging on an inclined flat surface, Heat mass transfer 39, No. 1, 19-26 (2002)
[6] Dong, L. L.; Cheung, C. S.; Leung, C. W.: Heat transfer of an impinging butane/air flame jet of low Reynolds number, Exp. heat transfer 14, 265-282 (2001)
[7] Dong, L. L.; Cheung, C. S.; Leung, C. W.: Heat transfer from an impinging pre-mixed butane/air slot flame jet, Int. J. Heat mass transfer 45, 979-992 (2002)
[8] Kwok, L. C.; Cheung, C. S.; Leung, C. W.: Heat transfer characteristics of slot and round pre-mixed impinging butane/air flame jet, Exp. heat transfer 16, 111-137 (2003)
[9] Chander, S.; Ray, A.: Influence of burner geometry on heat transfer characteristics of methane/air flame impinging on flat surface, Exp. heat transfer 19, No. 1, 15-38 (2006)
[10] Hsieh, W. D.; Lin, T. H.: Methane flame stability in a jet impinging onto a wall, Energy convers. Manage. 14, No. 5, 727-739 (2005)
[11] Hou, S. S.; Ko, Y. C.: Influence of oblique angle and heating height on flame structure, temperature field and efficiency of an impinging laminar jet flame, Energy convers. Manage. 46, No. 6, 941-958 (2005)
[12] A.O. Hemeson, M.E. Horsley, M.R.I. Purvis, Influence of burner design on impingement heat transfer from flames, in: Proceedings of Second UK National Conference on Heat Transfer, 1988, pp. 1175 – 1181.
[13] Kilham, J. K.; Purvis, M. R. I.: Heat transfer from normally impinging flames, Combust. sci. Technol. 18, 81-90 (1978)
[14] Fairweather, M.; Kilham, J. K.; Mohebi-Ashtiani, A.: Stagnation point heat transfer from turbulent methane – air flames, Combust. sci. Technol. 3, 25-238 (1984)
[15] Hargrave, G. K.; Fairweather, M.; Kilham, J. K.: Forced convection heat transfer from impinging flames. Part II: Impingement heat transfer, Int. J. Heat mass transfer 8, 132-138 (1987)
[16] Mohr, J. W.; Yagoobi, J. Sayed; Page, R. H.: Heat transfer characteristics of a radial jet re-attachment flames, J. heat transfer 119, 258-264 (1997)
[17] Mohr, J. W.; Yagoobi, J. Sayed; Page, R. H.: Combustion measurements from an impinging radial jet re-attachment flame, Combust. flame 106, 69-80 (1996)
[18] Wu, J.; Yagoobi, J. Sayed; Page, R. H.: Heat transfer and combustion characteristics of an array of radial jet re-attachment flames, Combust. flames 125, 955-964 (2001)
[19] Mizuno, K.; Mittal, R.; Viskanta, R.: An experimental study of pre-mixed flame impingement heat transfer, Proceedings of ASME heat transfer division 4, HTD-vol. 335, 245-252 (1996)
[20] Baukal, C. E.; Gebhart, B.: Surface condition effect on flame impingement heat transfer, Exp. therm. Fluid sci. 15, 323-335 (1997)
[21] Baukal, C. E.; Gebhart, B.: Heat transfer from oxygen-enhanced/natural gas flames impinging normal to plane surface, Exp. therm. Fluid sci. 16, 247-259 (1998)
[22] Schutle, E. M.: Impingement heat transfer rates from torch flames, J. heat transfer 94, 231-233 (1972)
[23] Conolly, R.; Davies, R. M.: A study of convective heat transfer from flames, Int. J. Heat mass transfer 15, 2155-2172 (1972)
[24] Popiel, C. O.; Van Der Meer, T. H.; Hoogendoorn, C. J.: Convective heat transfer on a plate in an impinging round hot gas jet of low Reynolds number, Int. J. Heat mass transfer 23, 1055-1068 (1980)
[25] Chander, S.; Ray, A.: Heat transfer characteristics of methane/air flame impinging normally to a cylindrical surface, Exp. therm. Fluid sci. 32, No. 2, 707-721 (2007)
[26] Chattopadhyay, H.: Numerical investigations of heat transfer from impinging annular jet, Int. J. Heat mass transfer 47, 3197-3201 (2004) · Zbl 1079.76528 · doi:10.1016/j.ijheatmasstransfer.2004.02.011
[27] Chatterjee, A.; Deviprasath, L. J.: Heat transfer in confined laminar axi-symmetric impinging jets at small nozzle-plate distances: the role of upstream vorticity diffusion, Numer. heat transfer A 39, 777-800 (2001)
[28] Remie, M. J.; Cremers, M. F. G.; Schreel, K. R. A.M.; De Goey, L. P. H.: Flame jet properties of bunsen-type flames, Combust. flame 147, No. 3, 163-170 (2006)
[29] Remie, M. J.; Cremers, M. F. G.; Schreel, K. R. A.M.; De Goey, L. P. H.: Analysis of the heat transfer of an impinging laminar flame jet, Int. J. Heat mass transfer 50, No. 13 – 14, 2816-2827 (2007) · Zbl 1119.80380 · doi:10.1016/j.ijheatmasstransfer.2006.10.053
[30] Sibulkin, M.: Heat transfer near the forward stagnation point of the body of revolution, J. aeronaut. Sci. 19, 570-571 (1952)
[31] Remie, M. J.; Cremers, M. F. G.; Schreel, K. R. A.M.; Alden, M.; De Goey, L. P. H.: Extended heat-transfer relation for an impinging laminar flame jet to a flat plate, Int. J. Heat mass transfer 51, 854-1865 (2008) · Zbl 1140.80407 · doi:10.1016/j.ijheatmasstransfer.2007.06.042
[32] Remie, M. J.; Sarner, G.; Cremers, M. F. G.; Omrane, A.; Schreel, K. R. A.M.; De Goey, L. P. H.: Heat transfer distribution for an impinging laminar flame jet to a flat plate, Int. J. Heat mass transfer 51, 3144-3152 (2008) · Zbl 1143.80342 · doi:10.1016/j.ijheatmasstransfer.2007.08.036
[33] Chander, S.; Ray, A.: An experimental and numerical study of stagnation point heat transfer for methane/air laminar flame impinging on a flat surface, Int. J. Heat mass transfer 51, No. 13 – 14, 3595-3607 (2007) · Zbl 1148.80375 · doi:10.1016/j.ijheatmasstransfer.2007.10.018
[34] C.R. Kleijn, Heat transfer from laminar impinging methane air flames, in: Proceedings of 2001 ASME-PVP Conference on Third International Symposium on Computational Technologies for Fluid/Thermal/Chemical Systems with Industrial Applications, Atlanta, Georgia, USA, July 22 – 26, 2001, pp.1 – 11.
[35] Viskanta, R.: Heat transfer to impinging isothermal gas and flame jets, Exp. therm. Fluid sci. 6, 111-134 (1993)
[36] Viskanta, R.: Convective and radiative flame jet impingement heat transfer, Int. J. Transport phenom. 1, 1-15 (1998)
[37] Chander, S.; Ray, A.: Flame impingement heat transfer – a review, Energy convers. Manage. 46, No. 18 – 19, 2803-2837 (2005)
[38] Chander, S.; Ray, A.: Heat transfer characteristics of three interacting flame jets impinging on flat surface, Int. J. Heat mass transfer 50, No. 3 – 4, 640-653 (2007)
[39] Kline, S. J.; Mcclintock, F. A.: Describing uncertainties in single sample experiments, Mech. eng. 75, 3-8 (1953)
[40] Fluent User Guide, vol. 1 – 4, FLUENT 6.3.26, 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.