×

zbMATH — the first resource for mathematics

Biharmonic hypersurfaces in 4-dimensional space forms. (English) Zbl 1210.58013
The authors study proper biharmonic hypersurfaces with at most distinct principal curvatures in space forms. Biharmonic maps between Riemannian manifolds are critical points of the bienergy functional. The authors prove that the only proper biharmonic compact hypersurfaces of \(S^4\) are the hypersphere \(S^3(\frac{1}{\sqrt{2}})\) and the torus \(S^1(\frac{1}{\sqrt{2}}) \times S^2(\frac{1}{\sqrt{2}})\). The strategy to prove the main theorem consists in proving that proper biharmonic hypersurfaces in \(4\)-dimensional space form have constant mean curvature.

MSC:
58E20 Harmonic maps, etc.
53C43 Differential geometric aspects of harmonic maps
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Balmuş, Classification results for biharmonic submanifolds in spheres, Israel J. Math. 168 pp 201– (2008)
[2] Caddeo, Biharmonic submanifolds of S3, Int. J. Math. 12 pp 867– (2001)
[3] Caddeo, Biharmonic submanifolds in spheres, Israel J. Math. 130 pp 109– (2002) · Zbl 1038.58011
[4] Cartan, Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphriques, Math. Z. 45 pp 335– (1939) · Zbl 0021.15603
[5] Chang, On closed hypersurfaces of constant scalar curvatures and mean curvatures in Sn +1, Pacific J. Math. 165 pp 67– (1994) · Zbl 0846.53040 · doi:10.2140/pjm.1994.165.67
[6] Chang, A closed hypersurface with constant scalar curvature and mean curvature in 4 is isoparametric, Commun. Anal. Geom 1 pp 71– (1993) · Zbl 0791.53058 · doi:10.4310/CAG.1993.v1.n1.a4
[7] B.-Y. Chen Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics Vol. 1 (World Scientific Publishing Co., Singapore, 1984).
[8] Chen, Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math. 52 pp 167– (1998) · Zbl 0892.53012
[9] Defever, Hypersurfaces of 4 satisfying \(\Delta\)H = \(\lambda\)H, Michigan Math. J. 44 pp 355– (1997)
[10] Defever, Hypersurfaces of 4 with harmonic mean curvature vector, Math. Nachr. 196 pp 61– (1998) · Zbl 0944.53005 · doi:10.1002/mana.19981960104
[11] Defever, Biharmonic hypersurfaces of the 4-dimensional semi-Euclidean space 4s, J. Math. Anal. Appl. 315 pp 276– (2006) · Zbl 1091.53038
[12] Dimitric, Submanifolds of Em with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20 pp 53– (1992)
[13] Eells, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 pp 109– (1964) · Zbl 0122.40102
[14] Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 pp 130– (1986) · Zbl 0596.53046
[15] Hasanis, Hypersurfaces in E4 with harmonic mean curvature vector field, Math. Nachr. 172 pp 145– (1995) · Zbl 0839.53007
[16] Ichiyama, Bi-harmonic maps and bi-Yang-Mills fields, Note Mat. 28 (Suppl. 1) pp 233– (2008) · Zbl 1201.58012
[17] Lawson, Complete minimal surfaces in 3, Ann. of Math. 92 pp 335– (1970)
[18] Oniciuc, Biharmonic maps between Riemannian manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.) 48 pp 237– (2002) · Zbl 1061.58015
[19] Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tohoku. Math. J. 21 pp 363– (1969) · Zbl 0185.49904
[20] E. Loubeau S. Montaldo C. Oniciuc The Bibliography of Biharmonic Maps. http://beltrami.sc.unica.it/biharmonic/. · Zbl 1107.58007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.