×

Estimation of cell proliferation dynamics using CFSE data. (English) Zbl 1209.92012

Summary: Advances in fluorescent labeling of cells as measured by flow cytometry have allowed for quantitative studies of proliferating populations of cells. The investigations [T. Luzyanina et al., J. Math. Biol. 54, No. 1, 57–89 (2007; Zbl 1113.92021); ibid. 59, No. 5, 581–603 (2009; Zbl 1231.92027); Theor. Biol. Med. Model. 4, 1–26 (2007)] contain a mathematical model with fluorescence intensity as a structure variable to describe the evolution in time of proliferating cells labeled by carboxyfluorescein succinimidyl ester (CFSE). Here, this model and several extensions/modifications are discussed. Suggestions for improvements are presented and analyzed with respect to statistical significance for better agreement between model solutions and experimental data. These investigations suggest that the new decay/label loss and time dependent effective proliferation and death rates do indeed provide improved fits of the model to data. Statistical models for the observed variability/noise in the data are discussed with implications for uncertainty quantification. The resulting new cell dynamics model should prove useful in proliferation assay tracking and modeling, with numerous applications in the biomedical sciences.

MSC:

92C37 Cell biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
62P10 Applications of statistics to biology and medical sciences; meta analysis
37N25 Dynamical systems in biology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Banks, H.T., Davis, J.L., 2007. A comparison of approximation methods for the estimation of probability distributions on parameters. Appl. Numer. Math. 57, 753–777. · Zbl 1115.65009 · doi:10.1016/j.apnum.2006.07.016
[2] Banks, H.T., Fitzpatrick, B.G., 1989. Inverse problems for distributed systems: statistical tests and ANOVA. In: Proc. International Symposium on Math. Approaches to Envir. and Ecol. Problems, Springer Lecture Note in Biomath., vol. 81, pp. 262–273. Springer, Berlin. LCDS/CCS Rep. 88-16, July, 1988, Brown University.
[3] Banks, H.T., Fitzpatrick, B.G., 1990. Statistical methods for model comparison in parameter estimation problems for distributed systems. J. Math. Biol. 28, 501–527. CAMS Tech. Rep. 89-4, September, 1989, University of Southern California. · Zbl 0732.62061 · doi:10.1007/BF00164161
[4] Banks, H.T., Fitzpatrick, B.G., 1991. Estimation of growth rate distributions in size-structured population models. Quart. Appl. Math. 49, 215–235. CAMS Tech. Rep. 90-2, January, 1990, University of Southern California. · Zbl 0731.92021
[5] Banks, H.T., Iles, D.W., 1987. On compactness of admissible parameter sets: convergence and stability in inverse problems for distributed parameter systems. In: Proc. Conf. on Control Systems Governed by PDE’s, February, 1986, Gainesville, FL. Springer Lecture Notes in Control & Inf. Science, vol. 97, pp. 130–142. Springer, Berlin. ICASE Report #86-38, NASA Langley Res. Ctr., Hampton VA 1986.
[6] Banks, H.T., Kunsich, K., 1989. Estimation Techniques for Distributed Parameter Systems. Birkhauser, Boston.
[7] Banks, H.T., Lybeck, N., 1996. Modeling methodology for elastomer dynamics. In: Systems and Control in the 21st Century, pp. 37–50. Birkhauser, Boston. CRSC-TR96-29, NCSU, September, 1996. · Zbl 0864.73013
[8] Banks, H.T., Pedersen, M., 2009. Well-posedness of inverse problems for systems with time dependent parameters. Arab. J. Sci. Eng. Math. 1, 39–58. CRSC-TR08-10, August, 2008. · Zbl 1182.35225
[9] Banks, H.T., Samuels, J.R., 2009. Detection of cardiac occlusions using viscoelastic wave propagation. Adv. Appl. Math. Mech. 1, 1–28. CRSC-TR08-23, December, 2008.
[10] Banks, H.T., Tran, H.T., 2009. Mathematical and Experimental Modeling of Physical and Biological Processes. CRC Press, Boca Raton. · Zbl 1402.00037
[11] Banks, H.T., Botsford, L.W., Kappel, F., Wang, C., 1988. Modeling and estimation in size structured population models. LCDC-CSS Report 87-13, Brown University; Proceedings 2nd Course on Mathematical Ecology (Trieste, December 8–12, 1986) World Press, Singapore, pp. 521–541.
[12] Banks, H.T., Smith, R.C., Wang, Y., 1996. Smart Material Structures: Modeling, Estimation and Control. Masson Series on Research in Applied Math. Masson/Wiley, Paris/New York.
[13] Banks, H.T., Bortz, D.M., Holte, S.E., 2003. Incorporation of variability into the modeling of viral delays in HIV infection dynamics. Math. Biosci. 183, 63–91. · Zbl 1011.92037 · doi:10.1016/S0025-5564(02)00218-3
[14] Banks, H.T., Davidian, M., Samuels, Jr., J.R., Sutton, Karyn L., 2009. An inverse problem statistical methodology summary. In: Chowell, G., Hyman, M., Hengartner, N., Bettencourt, L.M.A., Castillo-Chavez, C. (Eds.), Statistical Estimation Approaches in Epidemiology, pp. 249–302. Springer, Berlin. CRSC-TR08-01, January, 2008. · Zbl 1345.92006
[15] Banks, H.T., Holm, K., Robbins, D., 2010. Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. bootstrapping. Arab. J. Sci. Eng. Math., submitted. CRSC-TR09-13, June, 2009; Revised August, 2009. · Zbl 1205.93170
[16] Bell, G., Anderson, E., 1967. Cell growth and division I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures. Biophys. J. 7, 329–351. · doi:10.1016/S0006-3495(67)86592-5
[17] Bellomo, N., Preziosi, L., 2000. Modelling and mathematical problems related to tumor evolution and its integration with the immune system. Math. Comput. Model. 32, 413–452. · Zbl 0997.92020 · doi:10.1016/S0895-7177(00)00143-6
[18] Bernard, S., Pujo-Menjouet, L., Mackey, M.C., 2003. Analysis of cell kinetics using a cell division marker: Mathematical modeling of experimental data. Biophys. J. 84, 3414–3424. · doi:10.1016/S0006-3495(03)70063-0
[19] Bird, J.J., Brown, D.R., Mullen, A.C., Moskowitz, N.H., Mahowald, M.A., Sider, J.R., Ajewski, T.F., Wang, C., Reiner, S.L., 1998. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237. · doi:10.1016/S1074-7613(00)80605-6
[20] Bonhoeffer, S., Mohri, H., Ho, D., Perleson, A.S., 2000. Quantification of cell turnover kinetics using 5-Bromo-2’-deoxyuridine. J. Immunol. 164, 5049–5054.
[21] Carroll, R.J., Ruppert, D., 2000. Transformation and Weighting in Regression. Chapman & Hall, London. · Zbl 0666.62062
[22] Chao, D.L., Davenport, M.P., Forrest, S., Perleson, A.S., 2003. Stochastic stage-structured modeling of the adaptive immune system. In: Proceedings of the 2003 IEEE Bioinformatics Conference (CSB 2003), pp. 124–131, Albuquerque, August 11–14, 2003.
[23] Davidian, M., Giltinan, D.M., 1995. Nonlinear Models for Repeated Measurement Data. Chapman & Hall, London.
[24] de Boer, R.J., Ganusov, V.V., Milutinovic, D., Hodgkin, P., Perelson, A.S., 2006. Estimating lymphocyte division and death rates from CFSE data. Bull. Math. Biol. 68, 1011–1031. · Zbl 1334.92112 · doi:10.1007/s11538-006-9094-8
[25] Fung, Y.C., 1993. Biomechanics: Mechanical Properties of Living Tissue. Springer, Berlin.
[26] Fung, Y.C., 1994. A First Course in Continuum Mechanics. Prentice Hall, Englewood Cliffs.
[27] Ganusov, V.V., Pilyugin, S.S., de Boer, R.J., Murali-Krishna, K., Ahmed, R., Anti, R., 2005. Quantifying cell turnover using CFSE data. J. Immunol. Methods 298, 183–200. · doi:10.1016/j.jim.2005.01.011
[28] Gett, A.V., Hodgkin, P.D., 1998. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl. Acad. Sci. USA. 95, 9488–9493. · doi:10.1073/pnas.95.16.9488
[29] Gett, A.V., Hodgkin, P.D., 2000. A cellular calculus for signal integration by T cells. Nat. Immunol. 1, 239–244. · doi:10.1038/79782
[30] Gyllenberg, M., Webb, G.F., 1990. A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol. 28, 671–694. · Zbl 0744.92026 · doi:10.1007/BF00160231
[31] Hawkins, E.D., Hommel, M., Turner, M.L., Battye, F., Markham, J., Hodgkin, P.D., 2007. Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat. Protocols 2, 2057–2067. · doi:10.1038/nprot.2007.297
[32] Hawkins, E.D., Turner, M.L., Dowling, M.R., van Gend, C., Hodgkin, P.D., 2007. A model of immune regulation as a consequence of randomized lymphocyte division and death times. Proc. Natl. Acad. Sci. 104(12), 5032–5037. · doi:10.1073/pnas.0700026104
[33] Hodgkin, P.D., Go, N.F., Cupp, J.E., Howard, M., 1996. Interleukin-4 enhances anti-IgM stimulation of B cells by improving cell viability and by increasing the sensitivity of B cells to the anti-IgM signal. Cell. Immunol. 134, 14–30. · doi:10.1016/0008-8749(91)90327-8
[34] Komarova, N.L., 2006. Stochastic modeling of drug resistance in cancer. J. Theor. Biol. 239, 351–366. · doi:10.1016/j.jtbi.2005.08.003
[35] Komarova, N.L., Wodarz, D., 2007. Effect of cellular quiescence on the success of targeted CML therapy. In: PloS ONE, vol. 2, p. 10, e990.
[36] Lee, H.Y., Hawkins, E.D., Zand, M.S., Mosmann, T., Wu, H., Hodgkin, P.D., Perelson, A.S., 2009. Interpreting CFSE obtained division histories of B cells in vitro with Smith-Martin and cyton type models. Bull. Math Biol. 71, 1649–1670. · Zbl 1173.92011 · doi:10.1007/s11538-009-9418-6
[37] León, K., Faro, J., Carneiro, J., 2004. A general mathematical framework to model generation structure in a population of asynchronously dividing cells. J. Theor. Biol. 229, 455–476. · doi:10.1016/j.jtbi.2004.04.011
[38] Luzyanina, T., Mrusek, S., Edwards, J.T., Roose, D., Ehl, S., Bocharov, G., 2007. Computational analysis of CFSE proliferation assay. J. Math. Biol. 54, 57–89. · Zbl 1113.92021 · doi:10.1007/s00285-006-0046-6
[39] Luzyanina, T., Roose, D., Schenkel, T., Sester, M., Ehl, S., Meyerhans, A., Bocharov, G., 2007. Numerical modelling of label-structured cell population growth using CFSE distribution data. Theor. Biol. Med. Model. 4, 1–26. · doi:10.1186/1742-4682-4-26
[40] Luzyanina, T., Roose, D., Bocharov, G., 2009. Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data. J. Math. Biol. 59, 581–603. · Zbl 1231.92027 · doi:10.1007/s00285-008-0244-5
[41] Lyons, A.B., 1999. Divided we stand: tracking cell proliferation with carboxyfluorescein diacetate succinimidyl ester. Immunol. Cell Biol. 77, 509–515. · doi:10.1046/j.1440-1711.1999.00864.x
[42] Lyons, A.B., Doherty, K.V., 2004. Flow cytometric analysis of cell division by dye dilution. Curr. Protocols Cytom. 9.11.1–9.11.10.
[43] Lyons, A.B., Parish, C.R., 1994. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137. · doi:10.1016/0022-1759(94)90236-4
[44] Marsden, J.E., Hughes, T.J.R., 1994. Mathematical Foundations of Elasticity. Dover, Mineola. · Zbl 0545.73031
[45] Matera, G., Lupi, M., Ubezio, P., 2004. Heterogeneous cell response to topotecan in a CFSE-based proliferative test. Cytometry A 62, 118–128. · doi:10.1002/cyto.a.20097
[46] Ogden, R.W., 1984. Non-Linear Elastic Deformations. Dover, Mineola. · Zbl 0541.73044
[47] Quah, B., Warren, H., Parish, C., 2007. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat. Protocols 2, 2049–2056. · doi:10.1038/nprot.2007.296
[48] Seber, G.A.F., Wild, C.J., 2003. Nonlinear Regression. Wiley, Hoboken.
[49] Shampine, L.F., 2005. Solving hyperbolic PDEs in MATLAB. Appl. Numer. Anal. Comput. Math. 2, 346–358. · Zbl 1085.65514 · doi:10.1002/anac.200510025
[50] Sinko, J., Streifer, W., 1967. A new model for age-size structure of a population. Ecology 48, 910–918. · doi:10.2307/1934533
[51] Smith, J.A., Martin, L., 1973. Do cells cycle? Proc. Natl. Acad. Sci. USA 70, 1263–1267. · doi:10.1073/pnas.70.4.1263
[52] Wikipedia, 2010. http://en.wikipedia.org/wiki/Fluorescence_spectroscopy .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.