zbMATH — the first resource for mathematics

Dynamics and heat transfer in a quasi-two-dimensional MHD flow past a circular cylinder in a duct at high Hartmann number. (English) Zbl 1209.80011
Summary: The fluid flow and heat transfer of a liquid metal past a circular cylinder in a rectangular duct (width-to-height aspect ratio of 2) under a strong transverse magnetic field is studied numerically using a quasi-two-dimensional model. Transition from steady to unsteady flow regimes is determined as a function of Hartmann number and blockage ratio, as are Strouhal number, and the heat transfer from the heated wall to the fluid. Downstream cross-stream mixing induced by the cylinder wake was found to increase heat transfer by more than a factor of two in some cases.

80A20 Heat and mass transfer, heat flow (MSC2010)
76W05 Magnetohydrodynamics and electrohydrodynamics
80M22 Spectral, collocation and related (meshless) methods applied to problems in thermodynamics and heat transfer
76M22 Spectral methods applied to problems in fluid mechanics
Full Text: DOI
[1] Münevver, S.: Magnetohydrodynamic flow in a rectangular duct, Int. J. Numer. meth. Fluids 7, 697-718 (1987) · Zbl 0639.76112 · doi:10.1002/fld.1650070703
[2] Kirillov, I. R.; Reed, C. B.; Barleon, L.; Miyazaki, K.: Present understanding of MHD and heat transfer phenomena for liquid metal blankets, Fusion eng. Des. 27, 553-569 (1995)
[3] Lielausis, O.: Liquid-metal magnetohydrodynamics, Atomic energy rev. 13, 527-581 (1975)
[4] Williamson, C. H. K.: Vortex dynamics in the cylinder wake, Annu. rev. Fluid mech. 28, 477-539 (1996)
[5] Zdravkovich, M. M.: Flow around circular cylinders: A comprehensive guide through flow phenomena, experiments, applications, mathematical models, and computer simulations, (2003)
[6] Coutanceau, M.; Bouard, R.: Experimental determination of the Main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow, J. fluid mech. 79, 231-256 (1977)
[7] Chen, J. H.; Pritchard, W. G.; Tavener, S. J.: Bifurcation for flow past a cylinder between parallel planes, J. fluid mech. 284, 23-41 (1995) · Zbl 0842.76015 · doi:10.1017/S0022112095000255
[8] Behr, M.; Hastreiter, D.; Mittal, S.; Tezduyar, T. E.: Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries, Comput. meth. Appl. mech. Eng. 123, 309-316 (1995)
[9] Anagnostopoulos, P.; Iliadis, G.; Richardson, S.: Numerical study of the blockage effects on viscous flow past a circular cylinder, Int. J. Numer. meth. Fluids 22, 1061-1074 (1996) · Zbl 0871.76039 · doi:10.1002/(SICI)1097-0363(19960615)22:11<1061::AID-FLD393>3.0.CO;2-Q
[10] Zovatto, L.; Pedrizzetti, G.: Flow about a circular cylinder between parallel walls, J. fluid mech. 440, 1-25 (2001) · Zbl 1020.76030 · doi:10.1017/S0022112001004608
[11] Khan, W. A.; Yovanovich, J. R.; Culham, M. M.: Fluid flow and heat transfer from a cylinder between parallel planes, J. thermophys. Heat transfer 18, 395-403 (2004)
[12] Chakraborty, J.; Verma, N.; Chhabra, R. P.: Wall effects in flow past a circular cylinder in a plane channel: a numerical study, Chem. eng. Proc. 43, 1529-1537 (2004)
[13] Sahin, M.; Owens, R. G.: A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder, Phys. fluids 16, 1305-1320 (2004) · Zbl 1186.76455 · doi:10.1063/1.1668285
[14] Cliffe, K. A.; Tavener, S. J.: The effect of cylinder rotation and blockage ratio on the onset of periodic flows, J. fluid mech. 501, 125-133 (2004) · Zbl 1051.76024 · doi:10.1017/S0022112003007377
[15] Mettu, S.; Verma, N.; Chhabra, R.: Momentum and heat transfer from an asymmetrically confined circular cylinder in a plane channel, Heat mass transfer 42, 1037-1048 (2006)
[16] Shercliff, J. A.: Some duct flow problems at high Hartmann number, Zeit. angew. Math. phys. (ZAMP) 26, 537-548 (1975) · Zbl 0316.76070 · doi:10.1007/BF01594027
[17] Davidson, P. A.: The role of angular momentum in the magnetic damping of turbulence, J. fluid mech. 336, 123-150 (1997) · Zbl 0892.76092 · doi:10.1017/S002211209600465X
[18] Pothherat, A.; Sommeria, J.; Moreau, R.: An effective two-dimensional model for MHD flows with transverse magnetic field, J. fluid mech. 424, 75-100 (2000) · Zbl 0990.76096 · doi:10.1017/S0022112000001944
[19] Sommeria, J.; Moreau, R.: Why, how, and when, MHD turbulence becomes two-dimensional, J. fluid mech. 118, 507-518 (1982) · Zbl 0487.76114 · doi:10.1017/S0022112082001177
[20] Alboussiere, T.; Uspenski, V.; Moreau, R.: Quasi-2d MHD turbulent shear layers, Exp. therm. Fluid sci. 20, 19-24 (1999)
[21] O.V. Andreev, Y. Kolesnikov, MHD instabilities at transverse flow around a circular cylinder in an axial magnetic field, in: Third International Conference on Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows, Aussois, France, pp. 205 – 210.
[22] Burr, U.; Barleon, L.; Muller, U.; Tsinober, A.: Turbulent transport of momentum and heat in magnetohydrodynamic rectangular duct flow with strong sidewall jets, J. fluid mech. 406, 247-279 (2000) · Zbl 0955.76513 · doi:10.1017/S0022112099007405
[23] Klein, R.; Potherat, A.; Alferenok, A.: Experiment on a confined electrically driven vortex pair, Phys. rev. E 79, 016304 (2009)
[24] Buhler, L.: Instabilities in quasi-two-dimensional magnetohydrodynamic flows, J. fluid mech. 326, 125-150 (1996) · Zbl 0889.76024 · doi:10.1017/S0022112096008269
[25] Kolesnikov, Y. B.; Tsinober, A. B.: Experimental investigation of two-dimensional turbulence behind a grid, Fluid dyn. 9, 621-624 (1974)
[26] Moreau, J.; Sommeria, R.: Electrically driven vortices in a strong magnetic field, J. fluid mech. 189, 553-569 (1988)
[27] Kit, L.; Turntaev, S.; Tsinober, A. B.: Investigation with a conducting anemometer of the effect of magnetic field on disturbances of cylinder, Magnetohydrodynamics 6, 35-40 (1970)
[28] Kolesnikov, Y. B.; Tsinober, A. B.: Two-dimensional turbulent flow behind a circular cylinder, Magnetohydrodynamics 3, 300-307 (1972)
[29] D.D. Papailiou, Magneto-fluid-mechanic turbulent vortex streets, in: Fourth Beer – Sheva Seminar on MHD Flows and Turbulence, AIAA, 1984, pp. 152 – 173.
[30] Frank, M.; Barleon, L.; Muller, U.: Visual analysis of two-dimensional magnetohydrodynamics, Phys. fluids 13, 2287-2295 (2001) · Zbl 1184.76168 · doi:10.1063/1.1383785
[31] Muck, B.; Gunther, C.; Muller, U.; Buhler, L.: Three-dimensional MHD flows in rectangular ducts with internal obstacles, J. fluid mech. 418, 265-295 (2000) · Zbl 0991.76098 · doi:10.1017/S0022112000001300
[32] Dousset, V.; Potherat, A.: Numerical simulations of a cylinder wake under a strong axial magnetic field, Phys. fluids 20, 017104 (2008) · Zbl 1182.76215 · doi:10.1063/1.2831153
[33] Sheard, G. J.; Leweke, T.; Thompson, M. C.; Hourigan, K.: Flow around an impulsively arrested circular cylinder, Phys. fluids 19, 083601 (2007) · Zbl 1182.76688 · doi:10.1063/1.2754346
[34] Sheard, G. J.; King, M. P.: The influence of height ratio on Rayleigh-number scaling and stability of horizontal convection, Appl. math. Model. (2011) · Zbl 1217.76030
[35] Hossain, M. A.: Viscous and joule heating effects on MHD-free convection flow with variable plate temperature, Int. J. Heat mass transfer 35, 3485-3487 (1992)
[36] Yoon, H. S.; Chun, H. H.; Ha, M. Y.; Lee, H. G.: A numerical study on the fluid flow and heat transfer around a circular cylinder in an aligned magnetic field, Int. J. Heat mass transfer 47, 4075-4087 (2004) · Zbl 1111.76337 · doi:10.1016/j.ijheatmasstransfer.2004.05.015
[37] Karniadakis, G. E.; Israeli, M.; Orszag, S. A.: High-order splitting methods for the incompressible Navier – Stokes eqs, J. comput. Phys. 97, 414-443 (1991) · Zbl 0738.76050 · doi:10.1016/0021-9991(91)90007-8
[38] Blackburn, H. M.; Sheard, G. J.: On quasi-periodic and subharmonic Floquet wake instabilities, Phys. fluids 22, 031701 (2010) · Zbl 1188.76014 · doi:10.1063/1.3368106
[39] Neild, A.; Ng, T. W.; Sheard, G. J.; Powers, M.; Oberti, S.: Swirl mixing at microfluidic junctions due to low frequency side channel fluidic perturbations, Sens. act. B: chem. 150, 811-818 (2010)
[40] Provansal, M.; Mathis, C.; Boyer, L.: Bénard – von kármán instability: transient and forced regimes, J. fluid mech. 182, 1-22 (1987) · Zbl 0641.76046 · doi:10.1017/S0022112087002222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.