×

zbMATH — the first resource for mathematics

Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation. (English) Zbl 1209.65115
Summary: The homotopy analysis method developed for integer-order differential equation is directly extended to derive explicit and numerical solutions of nonlinear fractional differential equation for the first time. The fractional derivatives are described in the Caputo sense. To our knowledge, the Letter represents the first available numerical solutions of the fractional KdV-Burgers-Kuramoto equation.

MSC:
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering, (1991), Cambridge Univ. Press New York · Zbl 0762.35001
[2] Wadat, M., J. phys. soc. jpn., 32, 1681, (1972)
[3] Matveev, V.B.; Salle, M.A., Darboux transformation and soliton, (1991), Springer Berlin · Zbl 0744.35045
[4] Hirota, R., The direct method in soliton theory, (2004), Cambridge Univ. Press New York
[5] Conte, R.; Musette, M., J. phys. A: math. gen., 22, 169, (1989)
[6] Clarkson, P.A.; Kruskal, M.D., J. math. phys., 30, 2201, (1989)
[7] Lou, S.Y.; Chen, C.L.; Tang, X.Y., J. math. phys., 43, 4078, (2002)
[8] Liu, S.K.; Fu, Z.T.; Liu, S.D.; Zhao, Q., Phys. lett. A, 289, 69, (2001)
[9] Fan, E.G.; Chao, L., Phys. lett. A, 285, 373, (2001)
[10] Yan, Z.Y., Phys. lett. A, 285, 355, (2001)
[11] Lü, Z.S., Chaos solitons fractals, 17, 669, (2003)
[12] Li, B.; Chen, Y.; Zhang, H.Q., Chaos solitons fractals, 15, 647, (2003)
[13] Chen, Y.; Zheng, X.D.; Li, B.; Zhang, H.Q., Appl. math. comput., 149, 277, (2004)
[14] Xie, F.D.; Zhang, Y.; Lü, Z.S., Chaos solitons fractals, 24, 257, (2005)
[15] Wang, Q.; Chen, Y., Chaos solitons fractals, 30, 197, (2006)
[16] Song, L.N.; Wang, Q.; Zheng, Y.; Zhang, H.Q., Chaos solitons fractals, 31, 548, (2007)
[17] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992
[18] Liao, S.J., Int. J. non-linear mech., 34, 759, (1999)
[19] Liao, S.J., Beyond perturbation: introduction to the homotopy analysis method, (2003), Chapman & Hall/CRC Press Boca Raton
[20] Liao, S.J., J. fluid mech., 488, 189, (2003)
[21] Liao, S.J., Appl. math. comput., 147, 499, (2004)
[22] Liao, S.J., Int. J. heat mass transfer, 48, 2529, (2005)
[23] Liao, S.J., Appl. math. comput., 169, 1186, (2005)
[24] Liao, S.J.; Su, J.; Chwang, A.T., Int. J. heat mass transfer, 49, 2437, (2006)
[25] Liao, S.J.; Magyari, E., Z. angew. math. phys., 57, 777, (2006)
[26] Liao, S.J., Stud. appl. math., 117, 239, (2006)
[27] Abbasbandy, S., Phys. lett. A, 360, 109, (2006)
[28] Zhu, S.P., Anziam j., 47, 477, (2006)
[29] Abbasbandy, S., Phys. lett. A, 361, 478, (2007) · Zbl 1273.65156
[30] West, B.J.; Bolognab, M.; Grigolini, P., Physics of fractal operators, (2003), Springer New York
[31] Miller, K.S.; Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993), Wiley New York · Zbl 0789.26002
[32] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach Yverdon · Zbl 0818.26003
[33] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[34] Caputo, M., J. roy. astr. soc., 13, 529, (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.