×

zbMATH — the first resource for mathematics

Soliton solutions of the two-dimensional KdV-Burgers equation by homotopy perturbation method. (English) Zbl 1209.65113
Summary: He’s homotopy perturbation method (HPM) to finding the soliton solutions of the two-dimensional Korteweg-de Vries Burgers’ equation (tdKdVB) for the initial conditions was applied. Numerical solutions of the equation were obtained. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. The results reveal that the HPM is very effective and simple.

MSC:
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
Software:
RATH
PDF BibTeX Cite
Full Text: DOI
References:
[1] Abbasbandy, S., Chaos solitons fractals, 30, 1206, (2006)
[2] M.T. Darvishi, F. Khani, A.A. Soliman, Comput. Math. Appl., in press
[3] Debtnath, L., Nonlinear partial differential equations for scientists and engineers, (1997), Birkhäuser Boston
[4] Fan, E., Phys. lett. A, 227, 212, (2000)
[5] Fan, E.; Zhang, J.; Hon, B.Y.C., Phys. lett. A, 291, 376, (2001)
[6] He, J.H., Commun. nonlinear sci. numer. simulat., 2, 4, 235, (1997)
[7] He, J.H., Commun. nonlinear sci. numer. simulat., 2, 4, 230, (1997)
[8] He, J.H., Comput. methods appl. mech. engrg., 167, 69, (1998)
[9] He, J.H., Int. J. nonlinear mech., 34, 699, (1999)
[10] He, J.H., Comput. methods appl. mech. engrg., 178, 3/4, 230, (1997)
[11] He, J.H., Comput. method appl. mech. engrg., 167, 1-2, 57, (1998)
[12] He, J.H., Int. J. nonlinear mech., 35, 1, 37, (2000)
[13] He, J.H., Appl. math. comput., 135, 73, (2003)
[14] He, J.H., Appl. math. comput., 156, 527, (2004)
[15] He, J.H., Chaos solitons fractals, 26, 3, 827, (2005)
[16] He, J.H., Appl. math. comput., 156, 3, 591, (2004)
[17] He, J.H., Phys. lett. A, 350, 1-2, 87, (2006)
[18] He, J.H., Int. J. mod. phys. B, 20, 18, 2561, (2006)
[19] He, J.H., Int. J. mod. phys. B, 20, 10, 1141, (2006)
[20] Hirota, R., Phys. rev. lett., 27, 1192, (1971)
[21] Li, Z.B.; Wang, M.L., J. phys. A, 26, 6027, (1993)
[22] Ma, W.X., J. phys. A, 26, L17, (1993)
[23] Nayfeh, A.H., Problems in perturbation, (1985), John Wiley New York · Zbl 0139.31904
[24] Parkes, E.J., J. phys. A, 27, L497, (1994)
[25] Wang, M.L., Phys. lett. A, 213, 279, (1996)
[26] Wazwaz, A.M., Partial differential equations methods and applications, (2002), Balkema Rotterdam · Zbl 0997.35083
[27] Yan, C.T., Phys. lett. A, 224, 77, (1996)
[28] Yan, Z.Y.; Zhang, H.Q., J. phys. A, 34, 1785, (2001)
[29] Yan, Z.Y.; Zhang, H.Q., Phys. lett. A, 285, 355, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.