×

zbMATH — the first resource for mathematics

Numerical solution of sine-Gordon equation by variational iteration method. (English) Zbl 1209.65105
Summary: The variational iteration method (VIM) is applied to obtain approximate analytical solution of the sine-Gordon equation without any discretization. Comparisons with the exact solutions reveal that VIM is very effective and convenient.

MSC:
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Wang, X.Y., J. phys. lett. A, 131, 4/5, 277, (1988)
[2] Jeffrey, A.; Mohamad, M.N.B., J. wave motion, 14, 369, (1991) · Zbl 0732.76012
[3] Wadati, M., J. phys. soc. jpn., 32, 1681, (1972)
[4] Herbst, B.M.; Ablowitz, M.J., Quaest. math., 15, 345, (1992)
[5] Ablowitz, M.J.; Herbst, B.M.; Schober, C., J. comput. phys., 126, 299, (1996)
[6] Wazwaz, A.M., Appl. math. comput., 167, 1196, (2005)
[7] Kaya, D., Appl. math. comput., 143, 309, (2003)
[8] Kaya, D., Appl. math. comput., 159, 1, (2004)
[9] Saha Ray, S., Appl. math. comput., 175, 2, 1046, (2006)
[10] Wazwaz, A.M., Chaos solitons fractals, 28, 127, (2006)
[11] Wazwaz, A.M., Phys. lett. A, 350, 367, (2006)
[12] He, J.H., Commun. nonlinear sci. numer. simul., 2, 230, (1997)
[13] He, J.H., Commun. nonlinear sci. numer. simul., 3, 260, (1998)
[14] He, J.H., Int. J. non-linear mech., 34, 699, (1999)
[15] He, J.H., Appl. math. comput., 114, 115, (2000)
[16] He, J.H.; Wan, Y.Q.; Guo, Q., Int. J. circ. theory appl., 32, 629, (2004)
[17] He, J.H., Int. J. mod. phys. B, 20, 1141, (2006)
[18] He, J.H., Non-perturbative methods for strongly nonlinear problems, (2006), Dissertation.de-Verlag im Internet GmbH Berlin
[19] J.H. He, J. Comput. Appl. Math. (2006), in press
[20] Soliman, A.A., Chaos solitons fractals, 29, 2, 294, (2006)
[21] Abulwafa, E.M.; Abdou, M.A.; Mahmoud, A.A., Chaos solitons fractals, 29, 2, 313, (2006)
[22] Momani, S.; Abuasad, S., Chaos solitons fractals, 27, 1119, (2006)
[23] Odibat, Z.M.; Momani, S., Int. J. nonlinear sci. numer. simul., 7, 1, 27, (2006)
[24] Bildik, N.; Konuralp, A., Int. J. nonlinear sci. numer. simul., 7, 1, 65, (2006)
[25] Wazwaz, A.M., J. comput. appl. math., 207, 18, (2007)
[26] Wazwaz, A.M., J. comput. appl. math., 207, 129, (2007)
[27] El. Zoheiry, H.; Abassy, T.A.; El-Tawil, M.A., J. comput. appl. math., 207, 137, (2007)
[28] Abbasbandy, S., J. comput. appl. math., 207, 59, (2007)
[29] Junfeng, L., J. comput. appl. math., 207, 92, (2007)
[30] Batiha, B.; Noorani, M.S.M.; Hashim, I., Appl. math. comput., 186, 1322, (2007)
[31] B. Batiha, M.S.M. Noorani, I. Hashim, Chaos Solitons Fractals, doi: 10.1016/j.chaos.2006.06.080
[32] Momani, S.; Odibat, Z., Phys. lett. A, 355, 4-5, 271, (2006)
[33] Odibat, Z.; Momani, S., Appl. math. model., 32, 28, (2008)
[34] Inokuti, M.; Sekine, H.; Mura, T., Pergamon press, 156, (1978)
[35] E.Y. Deeba, S.A. Khuri, J. Comput. Phys. 124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.