×

zbMATH — the first resource for mathematics

Ashok Prasad Maitra (1938-2008). (English) Zbl 1209.01092
MSC:
01A70 Biographies, obituaries, personalia, bibliographies
28-03 History of measure and integration
60-03 History of probability theory
90-03 History of operations research and mathematical programming
91-03 History of game theory, economics, and finance
Keywords:
obituary
Biographic References:
Maitra, Ashok Prasad
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [1963] (with Barankin, E.W.) Generalization of the Fisher-Darmois-Koopman-Pitman theorem on sufficient statistics. Sankhyā, Ser. A, 25, 217–244. [MR 0171342 (30:1573) 62.05]
[2] [1965] Dynamic programming for countable state systems. Sankhyā, Ser. A, 27, 241–248. [MR 0200080 (33:8220) 90.40]
[3] [1966] A note on undiscounted dynamic programming. Ann. Math. Statist., 37, 1042–1044. [MR 0199017 (33:7167) 90.40]
[4] [1966] On stable transformations. Sankhyā, Ser. A, 28, 25–34. [MR 0257321 (41:1972) 28.70 (60.00)]
[5] [1968] Discounted dynamic programming on compact metric spaces. Sankhyāa, Ser. A, 30, 211–216. [MR 0237172 (38: 5463) 90.40] · Zbl 0187.17702
[6] [1969] A note on positive dynamic programming. Ann. Math. Statist., 40, 316–318. [MR 0250665 (40:3897) 90.40]
[7] [1970] (with Parthasarathy, T.) On stochastic games. J. Optim. Theory Appl., 5, 289–300. [MR 0263438 (41:8043) 90.72] · Zbl 0181.23204 · doi:10.1007/BF00927915
[8] [1970] Coanalytic sets that are not Blackwell spaces. Fund. Math., 67, 251–254. [MR 0266759 (42:1662) 04.40 (28.00)] · Zbl 0207.48503
[9] [1970] (with Ryll-Nardzewski, C.) On the existence of two analytic non-Borel sets which are not isomorphic. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 18, 177–178. [MR 0268846 (42:3743) 54.35 (04.00)] · Zbl 0197.48903
[10] [1971] On game-theoretic methods in the theory of Souslin sets. Fund. Math., 70, 179–185. [MR 0289740 (44:6928) 28.10 (54.00)]
[11] [1971] (with Parthasarathy, T.) On stochastic games, II. J. Optim. Theory Appl., 8, 154–160. [MR 0299240 (45:8289) 93E05] · Zbl 0215.60003 · doi:10.1007/BF00928474
[12] [1974] On the failure of the first principle of separation for coanalytic sets. Proc. Amer. Math. Soc., 46, 299–301. [MR 0356005 (50:8478) 54H05] · Zbl 0313.04001
[13] [1974] (with Kuratowski, K.) Some theorems on selectors and their applications to semi-continuous decompositions. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22, 877–881. [MR 0394558 (52: 15359) 54C65 (04A15, 28A05)] · Zbl 0317.54023
[14] [1975] (with Rao, B.V.) Selection theorems and the reduction principle. Trans. Amer. Math. Soc., 202, 57–66. [MR 0355960 (50:8433) 54C65] · Zbl 0314.54019 · doi:10.1090/S0002-9947-1975-0355960-4
[15] [1975] A note on bimeasurable functions. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 23, 131–134. [MR 0377000 (51:13175) 28A20] · Zbl 0338.28001
[16] [1975] A note on de Finetti’s theorem on exchangeable sequences of random variables. Unpublished manuscript, 9 pages.
[17] [1976] (with Rao, B.V.) Selection theorems for partitions of Polish spaces. Fund. Math., 93, 47–56. [MR 0493956 (58:12908) 54C65 (54E50)] · Zbl 0343.54008
[18] [1977] Integral representations of invariant measures. Trans. Amer. Math. Soc., 229, 209–225. [MR 0442197 (56:583) 28A65]
[19] [1979] (with Rao, B.V. and Bhaskara Rao, K.P.S.) A problem in the extension of measures. Illinois J. Math., 23, 211–216. [MR 528558 (80d:28011) 28A10] · Zbl 0414.28002
[20] [1979] (with Rao B.V. Generalizations of Castaing’s theorem on selectors. Colloq. Math., 42, 295–300. [MR 567567 (82m:28024) 28B20] · Zbl 0427.28010
[21] [1980] Analytic sets with countable sections. Fund. Math., 110, 101–106. [MR 600583 (82d:54043) 54H05]
[22] [1981] Extensions of measurable functions. Colloq. Math., 44, 99–104. [MR 633102 (83b:54016) 54C20 (28A20 54H05)] · Zbl 0507.28008
[23] [1982] An effective selection theorem. J. Symbolic Logic, 47, 388–394. [MR 654794 (83m:03060) 03E15 (04A15)]
[24] [1983] Selectors for Borel sets with large sections. Proc. Amer. Math. Soc., 89, 705–708. [MR 719000 (84k:54015) 54C65 (28C15 54H05)] · Zbl 0591.28007
[25] [1984] (with Levi, S.) Borel measurable images of Polish spaces. Proc. Amer. Math. Soc., 92, 98–102. [MR 749900 (85m:54041) 54H05 (28A20 54C65)] · doi:10.1090/S0002-9939-1984-0749900-4
[26] [1984] (with Blackwell, D.) Factorization of probability measures and absolutely measurable sets. Proc. Amer. Math. Soc., 92, 251–254. [MR 754713 (85j:28005) 28A50 (60A10)] · Zbl 0554.60001 · doi:10.1090/S0002-9939-1984-0754713-3
[27] [1985] (with Srivatsa, V.V.) Parametrizations of Borel sets with large sections. Proc. Amer. Math. Soc., 93, 543–548. [MR 774020 (86k:54031) 54C65 (03E15 04A15 20B20 28A05 54H05)] · Zbl 0565.54016 · doi:10.1090/S0002-9939-1985-0774020-3
[28] [1988] (with Ramakrishnan, S.) Factorization of measures and normal conditional distributions. Proc. Amer. Math. Soc., 103, 1259–1267. [MR 955019 (89g:60005) 60A10 (28D05)] · Zbl 0656.60006 · doi:10.1090/S0002-9939-1988-0955019-3
[29] [1988] (with Rao, B.V. and Srivatsa, V.V.) Some applications of selection theorems to parametrization problems. Proc. Amer. Math. Soc., 104, 96–100. [MR 958050 (90c:28008) 28A20 (04A15 54C65)] · Zbl 0663.28005 · doi:10.1090/S0002-9939-1988-0958050-7
[30] [1989] (with Dubins, L., Purves, R. and Sudderth, W.) Measurable, nonleavable gambling problems. Israel J. Math., 67, 257–271. [MR 1029901 (91d:60101) 60G40] · Zbl 0694.60038 · doi:10.1007/BF02764945
[31] [1990] (with Purves, R. and Sudderth, W.) Leavable gambling problems with unbounded utilities. Trans. Amer. Math. Soc., 320, 543–567. [MR 989581 (91g:60054) 60G40 (03E15 03E35 62L15 90D60 93E20)] · Zbl 0753.60043 · doi:10.1090/S0002-9947-1990-0989581-5
[32] [1990] (with Pestien, V. and Ramakrishnan, S.) Domination by Borel stopping times and some separation properties. Fund. Math., 135, 189–201. [MR 1077510 (92i:54039) 54H05 (04A15 60G40)] · Zbl 0731.54025
[33] [1991] (with Purves, R. and Sudderth, W.) A Borel measurable version of Konig’s lemma for random paths. Ann. Probab., 19, 423–451. [MR 1085346 (92g:60059) 60G40 (03E15)] · Zbl 0722.60037 · doi:10.1214/aop/1176990554
[34] [1991] (with Purves, R. and Sudderth, W.) A capacitability theorem in finitely additive gambling. Rend. Mat. Appl. (7), 11, 819–842. [MR 1151601 (93d:60077) 60G40 (28A12 90D60 93E20)] · Zbl 0748.60038
[35] [1992] (with Burgess, J.P.) Nonexistence of measurable optimal selections. Proc. Amer. Math. Soc., 116, 1101–1106. [MR 1120505 (93b:28030) 28B20 (54C65 90C39)] · Zbl 0767.28010 · doi:10.1090/S0002-9939-1992-1120505-3
[36] [1992] (with Purves, R. and Sudderth, W.) A capacitability theorem in measurable gambling theory. Trans. Amer. Math. Soc., 333, 221–249. [MR 1140918 (92k:60091) 60G40 (90D60 93E20)] · Zbl 0757.60039
[37] [1992] (with Sudderth, W.) An operator solution of stochastic games. Israel J. Math., 78, 33–49. [MR 1194957 (93k:90114) 90D15 (90D05 93E05)] · Zbl 0785.90107 · doi:10.1007/BF02801569
[38] [1992] (with Sudderth, W.) The optimal reward operator in negative dynamic programming. Math. Oper. Res., 17, 921–931. [MR 1196402 (94c:90107) 90C39 (04A15 90C40 93E20)] · Zbl 0773.90087 · doi:10.1287/moor.17.4.921
[39] [1992] (with Purves, R. and Sudderth, W.) Approximation theorems for gambling problems and stochastic games. In Game Theory and Economic Applications (New Delhi, 1990), (B. Dutta, D. Mookherjee, T. Parthasarathy, T.E.S. Raghavan, D. Ray and S. Tijs, eds.). Lecture Notes in Econom. and Math. Systems, 389. Springer, Berlin, 114–132. [MR 1228669 (94g:90189) 90D15 (90D60)] · Zbl 0788.90093
[40] [1993] (with Sudderth, W.) Borel stochastic games with lim sup payoff. Ann. Probab., 21, 861–885. [MR 1217569 (94c:90124) 90D15 (60G40 93E05)] · Zbl 0803.90142 · doi:10.1214/aop/1176989271
[41] [1993] (with Sudderth, W.) Finitely additive and measurable stochastic games. Internat. J. Game Theory, 22, 201–223. [MR 1242447 (94i:90177) 90D15] · Zbl 0789.90095 · doi:10.1007/BF01240053
[42] [1994] Multiple separation theorems. Proc. Amer. Math. Soc., 120, 573–576. [MR 1164147 (94d:03103) 03E15 (04A15)] · Zbl 0790.03052
[43] [1995] (with Sudderth, W.) Stochastic games and operators. In Topics in Contemporary Probability and Its Applications, (J.L. Snell, ed.). Probab. Stochastics Ser. CRC, Boca Raton, FL, 291–319. [MR 1410541 (97g:90192) 90D15 (90-02)]
[44] [1996] (with Sudderth, W.) The gambler and the stopper. In Statistics, Probability and Game Theory, (T.S. Ferguson, L.S. Shapley and J.B. MacQueen, eds.). IMS Lecture Notes Monogr. Ser., 30. Inst. Math. Statist., Hayward, CA, 191–208. [MR 1481781 (99a:90257) 90D15 (60G40)]
[45] [1998] (with Sudderth, W.) Finitely additive stochastic games with Borel measurable payoffs. Internat. J. Game Theory, 27, 257–267. [MR 1645524 (2000d:91020) 91A15] · Zbl 0947.91013 · doi:10.1007/s001820050071
[46] [1999] (with Sudderth, W.) An introduction to gambling theory and its applications to stochastic games. In Stochastic and Differential Games, (T.S. Ferguson, L.S. Shapley and J.B. MacQueen, eds.). Ann. Internat. Soc. Dynam. Games, 4, Birkhauser Boston, Boston, MA, 251–269. [MR 1678282 (2000b:91043) 91A60 (91A15)] · Zbl 0957.91032
[47] [2000] (with Sudderth, W.) Saturations of gambling houses. In Seminaire de Probabilites, XXXIV, (J. Azéma, M. Émery, M. Ledoux and M. Yor, eds.). Lecture Notes in Math., 1729, Springer, Berlin, 218–238. [MR 1768066 (2001g:60094) 60G40 (91A60)] · Zbl 0963.91017
[48] [2000] (with Sudderth, W.) Randomized strategies and terminal distributions. In Game Theory, Optimal Stopping, Probability and Statistics, (F.T. Bruss and L. Le Cam, eds.). IMS Lecture Notes Monogr. Ser., 35. Inst. Math. Statist., Beachwood, OH, 39–52. [MR 1833850 (2002d:91024) 91A60 (03E15 28A12 60G40)]
[49] [2002] (with Dubins, L.E. and Sudderth, W.) Invariant gambling problems and Markov decision processes. In Handbook of Markov Decision Processes, (E.A. Feinberg and A. Shwartz, eds.). Internat. Ser. Oper. Res. Management Sci., 40. Kluwer Acad. Publ., Boston, MA, 409–428. [MR 1887210 90C40 (91A60)] · Zbl 1014.90112
[50] [2002] (with Sudderth, W.) The balayage order defined by a gambling house. Sankhyā, Ser. A, 64, 852–867. [MR 1981515 (2004m:60088) 60G40 (46A55 46N30 60E15 91A60)]
[51] [2003] (with Sudderth, W.) Stochastic games with lim sup payoff. In Stochastic Games and Applications (Stony Brook, NY, 1999), (A. Neyman and S. Sorin, eds.). NATO Sci. Ser. C Math. Phys. Sci., 570. Kluwer Acad. Publ., Dordrecht, 357–366. [MR 2035566 91A15] · Zbl 1151.91353
[52] [2003] (with Sudderth, W.) Stochastic games with Borel payoffs. In Stochastic Games and Applications (Stony Brook, NY, 1999), (A. Neyman and S. Sorin, eds.). NATO Sci. Ser. C Math. Phys. Sci., 570. Kluwer Acad. Publ., Dordrecht, 367–373. [MR 2035567 (2004k:91030) 91A15] · Zbl 1153.91329
[53] [2003] (with Sudderth, W.) Borel stay-in-a-set games. Internat. J. Game Theory, 32, 97–108. [MR 2046681 (2004m:91026) 91A15 (46A55 46N10 60E15 60G40)] · Zbl 1050.91008 · doi:10.1007/s001820300148
[54] [2007] (with Barua, R.) Borel hierarchies in infinite products of Polish spaces. Proc. Indian Acad. Sci. (Math. Sci.), 117, 205–211. [MR 2329502 (2008d:03046) 03E15 (54H05)] · Zbl 1131.03021
[55] [2007] (with Sudderth, W.) Subgame-perfect equilibria for stochastic games. Math. Oper. Res., 32, 711–722. [MR 2348244 (2008g:91048) 91A15 (28B20)] · Zbl 1276.91018 · doi:10.1287/moor.1070.0264
[56] [2010] Ordinal solutions of open games and analytic sets. Sankhyā, Ser. A, 72, 19–36. · Zbl 1209.03044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.