×

zbMATH — the first resource for mathematics

Fixed point results for mappings satisfying \((\psi ,\varphi )\)-weakly contractive condition in partially ordered metric spaces. (English) Zbl 1208.41014
Summary: We establish coincidence fixed point and common fixed point theorems for mappings satisfying \((\psi ,\varphi )\)-weakly contractive condition in an ordered complete metric space. Some applications of our obtained results are given.

MSC:
41A50 Best approximation, Chebyshev systems
47H10 Fixed-point theorems
54H25 Fixed-point and coincidence theorems (topological aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Banach, S., Sur LES opérations dans LES ensembles abstraits et leur application aux équations intégrales, Fund. math., 3, 133-181, (1922) · JFM 48.0201.01
[2] Agarwal, R.P.; El-Gebeily, M.A.; O’Regan, D., Generalized contractions in partially ordered metric spaces, Appl. anal., 87, 1, 109-116, (2008) · Zbl 1140.47042
[3] Alber, Ya.I.; Guerre-Delabriere, S., Principles of weakly contractive maps in Hilbert spaces, (), 7-22 · Zbl 0897.47044
[4] Altun, I.; Simsek, H., Some fixed point theorems on ordered metric spaces and application, Fixed point theory appl., 2010, (2010), Article ID 621492, 17 pages · Zbl 1197.54053
[5] Amini-Harandi, A.; Emami, H., A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear anal., 72, 5, 2238-2242, (2010) · Zbl 1197.54054
[6] Beg, I.; Abbas, M., Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed point theory appl., 2006, (2006), Article ID 74503, 7 pages · Zbl 1133.54024
[7] Bhaskar, T.G.; Lakshmikantham, V., Fixed point theorems in partially ordered metric spaces and applications, Nonlinear anal., 65, 1379-1393, (2006) · Zbl 1106.47047
[8] Boyd, D.W.; Wong, J.S.W., On nonlinear contractions, Proc. amer. math. soc., 20, 2, 458-464, (1969) · Zbl 0175.44903
[9] Chidume, C.E.; Zegeye, H.; Aneke, S.J., Approximation of fixed points of weakly contractive non self maps in Banach spaces, J. math. anal. appl., 270, 1, 189-199, (2002) · Zbl 1005.47053
[10] Choudhury, B.S., Unique fixed point theorem for weakly C-contractive mappings, Kathmandhu univ. J. sci. engg. tech., 132, 1, 6-13, (2009)
[11] Ćirić, Lj.B.; Cakić, N.; Rajović, M.; Ume, J.S., Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed point theory appl., 2008, (2008), Article ID 131294, 11 pages · Zbl 1158.54019
[12] Ćirić, Lj.B.; Samet, B.; Vetro, C., Common fixed point theorems for families of occasionally weakly compatible mappings, Math. comput. modelling, (2010)
[13] Dhage, B.C., Condensing mappings and applications to existence theorems for common solution of differential equations, Bull. Korean math. soc., 62, 2, 344-348, (1977)
[14] Dhage, B.C.; O’Regan, D.; Agrawal, R.P., Common fixed point theorems for a pair of countably condensing mappings in ordered Banach spaces, J. appl. math. stoch. anal., 62, 2, 344-348, (1977)
[15] Drici, Z.; Mcrae, F.A.; Vasundhara Devi, J., Fixed point theorems in partially ordered metric spaces for operators with PPF dependence, Nonlinear anal., 67, 2, 641-647, (2007) · Zbl 1127.47049
[16] Dutta, P.N.; Choudhury, Binayak S., A generalisation of contraction principle in metric spaces, Fixed point theory appl., 2008, (2008), Article ID 406368, 8 pages · Zbl 1177.54024
[17] Harjani, J.; Sadarangani, K., Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear anal., 71, 7-8, 3403-3410, (2008) · Zbl 1221.54058
[18] Harjani, J.; Sadarangani, K., Generalized contractions in partially ordered metric spaces and applications to ordianry differential equations, Nonlinear anal., 72, 3-4, 1188-1197, (2010) · Zbl 1220.54025
[19] Jachymski, J., The contraction principle for mappings on a metric space with a graph, Proc. amer. math. soc., 136, 4, 1359-1373, (2008) · Zbl 1139.47040
[20] Jungck, G., Compatible mappings and common fixed points, Internat. J. math. math. sci., 9, 771-779, (1986) · Zbl 0613.54029
[21] S. Karpagam, S. Agrawal, Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal., in press (doi:10.1016/j.na.2010.07.026). · Zbl 1206.54047
[22] Khan, M.S.; Swaleh, M.; Sessa, S., Fixed point theorems by altering distances between the points, Bull. aust. math. soc., 30, 1, 1-9, (1984) · Zbl 0553.54023
[23] Luong, N.V.; Thuan, N.X., Coupled fixed points in partially ordered metric spaces and application, Nonlinear anal., 74, 3, 983-992, (2011) · Zbl 1202.54036
[24] Nieto, J.J.; Rodríguez-López, R., Contractive mapping theorems in partially ordered sets and applications to ordianry differential equations, Order, 22, 223-239, (2005) · Zbl 1095.47013
[25] Nieto, J.J.; Rodríguez-López, R., Existence and uniqueness of fixed point in partially ordered sets and applications to ordianry differential equations, Acta math. sin. (English ser.), 23, 12, 2205-2212, (2007) · Zbl 1140.47045
[26] Nieto, J.J.; Pouso, R.L.; Rodríguez-López, R., Fixed point theorems in partially ordered sets, Proc. amer. math. soc., 132, 8, 2505-2517, (2007) · Zbl 1126.47045
[27] Ran, A.C.M.; Reurings, M.C.B., A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. amer. math. soc., 132, 5, 1435-1443, (2004) · Zbl 1060.47056
[28] D. O’Regan, A. Petrutel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl.341 (2) 241-1252.
[29] Reich, S., Some fixed point problems, Atti acad. naz. lincei, 57, 194-198, (1974) · Zbl 0329.47019
[30] Rhoades, B.E., Some theorems on weakly contractive maps, Nonlinear anal., 47, 4, 2683-2693, (2001) · Zbl 1042.47521
[31] M.D. Rus, Fixed point theorems for generalized contractions in partially ordered metric spaces with semi-monotone metric, Nonlinear Analysis, in press (doi:10.1016/j.na.2010.10.053). · Zbl 1221.54072
[32] Samet, B., A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type, Int. J. math. anal., 3, 26, 1265-1271, (2009) · Zbl 1196.54084
[33] Samet, B., Coupled fixed point theorems for a generalized meir – keeler contraction in partially ordered metric spaces, Nonlinear anal., 72, 4508-4517, (2010) · Zbl 1264.54068
[34] Samet, B.; Yazidi, H., Coupled fixed point theorems in partially ordered \(\varepsilon\)-chainable metric spaces, Tjmcs, 1, 3, 142-151, (2010)
[35] Song, Y., Coincidence points for noncommuting f-weakly contractive mappings, Int. J. comput. appl. math., 2, 1, 51-57, (2007) · Zbl 1256.54083
[36] Wu, Y., New fixed point theorems and applications of mixed monotone operator, J. math. anal. appl., 341, 2, 883-893, (2008) · Zbl 1137.47044
[37] Wu, Y.; Liang, Z., Existence and uniqueness of fixed points for mixed monotone operators with applications, Nonlinear anal., 65, 10, 1913-1924, (2006) · Zbl 1111.47049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.