Röckner, Michael; Wang, Feng-Yu Log-Harnack inequality for stochastic differential equations in Hilbert spaces and its consequences. (English) Zbl 1207.60053 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13, No. 1, 27-37 (2010). The paper is devoted to establishing the log-Harnack inequality \[ P_t \log f (x) \leq \log P_t f (y) + \frac{K \rho(x,y)^2}{2(1-\exp(-Kt))}, \] for any bounded strictly positive \(f\) and for a semigroup that corresponds to the Itô stochastic differential equation in \(\mathbb R^n\), \[ dX_t = b(X_t) dt + \sigma(X_t) dB_t, \] under Lipschitz condition on (non-degenerate) \(\sigma\) and one-sided Lipschitz condition on \(b\) and with a certain metric \(\rho\) related to \(\sigma\) and a constant \(K\) from the unified Lipschitz condition. Then, by using approximation techniques, the inequality is extended to equations in Hilbert space \[ dX_t = (AX_t + F(X_t)) dt + \sigma(X_t) dW_t, \] with a cylindrical Brownian motion \(W\) and under a series of assumptions. Earlier similar results – including those by both authors – in Hilbert space are available only for a constant diffusion coefficient. As a corollary, a strong Feller property is derived with supplementary useful bounds. Reviewer: Alexander Yu. Veretennikov (Leeds) Cited in 33 Documents MSC: 60J60 Diffusion processes 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) Keywords:stochastic differential equation; log-Harnack inequality; strong Feller property PDF BibTeX XML Cite \textit{M. Röckner} and \textit{F.-Y. Wang}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13, No. 1, 27--37 (2010; Zbl 1207.60053) Full Text: DOI References: [1] DOI: 10.1016/j.bulsci.2005.10.001 · Zbl 1089.58024 · doi:10.1016/j.bulsci.2005.10.001 [2] Bakry D., C. R. Acad. Sci. Paris. Sér. I Math. 299 pp 775– [3] DOI: 10.1016/S0021-7824(01)01208-9 · Zbl 1038.35020 · doi:10.1016/S0021-7824(01)01208-9 [4] DOI: 10.1007/s004400200214 · Zbl 1036.47029 · doi:10.1007/s004400200214 [5] DOI: 10.1016/j.jfa.2009.01.007 · Zbl 1193.47047 · doi:10.1016/j.jfa.2009.01.007 [6] DOI: 10.1017/CBO9780511666223 · doi:10.1017/CBO9780511666223 [7] DOI: 10.1093/qjmath/52.2.171 · Zbl 1132.58302 · doi:10.1093/qjmath/52.2.171 [8] DOI: 10.1016/j.jmaa.2007.12.047 · Zbl 1151.60032 · doi:10.1016/j.jmaa.2007.12.047 [9] Prevot C., A Concise Course on Stochastic Partial Differential Equations (2007) [10] DOI: 10.1016/S0022-1236(03)00165-4 · Zbl 1059.47051 · doi:10.1016/S0022-1236(03)00165-4 [11] DOI: 10.1007/s004400050137 · Zbl 0887.35012 · doi:10.1007/s004400050137 [12] Wang F.-Y., Functional Inequalities, Markov Semigroups, and Spectral Theory (2005) [13] DOI: 10.1214/009117906000001204 · Zbl 1129.60060 · doi:10.1214/009117906000001204 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.