×

zbMATH — the first resource for mathematics

Basing PRFs on constant-query weak PRFs: minimizing assumptions for efficient symmetric cryptography. (English) Zbl 1206.94081
Pieprzyk, Josef (ed.), Advances in cryptology – ASIACRYPT 2008. 14th international conference on the theory and application of cryptology and information security, Melbourne, Australia, December 7–11, 2008. Proceedings. Berlin: Springer (ISBN 978-3-540-89254-0/pbk). Lecture Notes in Computer Science 5350, 161-178 (2008).
Summary: Although it is well known that all basic private-key cryptographic primitives can be built from one-way functions, finding weak assumptions from which practical implementations of such primitives exist remains a challenging task. Towards this goal, this paper introduces the notion of a constant-query weak PRF, a function with a secret key which is computationally indistinguishable from a truly random function when evaluated at a constant number \(s\) of known random inputs, where \(s\) can be as small as two.
We provide iterated constructions of (arbitrary-input-length) PRFs from constant-query weak PRFs that even improve the efficiency of previous constructions based on the stronger assumption of a weak PRF (where polynomially many evaluations are allowed).
One of our constructions directly provides a new mode of operation using a constant-query weak PRF for IND-CPA symmetric encryption which is essentially as efficient as conventional PRF-based counter-mode encryption. Furthermore, our constructions yield efficient modes of operation for keying hash functions (such as MD5 and SHA-1) to obtain iterated PRFs (and hence MACs) which rely solely on the assumption that the underlying compression function is a constant-query weak PRF, which is the weakest assumption ever considered in this context.
For the entire collection see [Zbl 1155.94008].

MSC:
94A60 Cryptography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bellare, M.: New proofs for NMAC and HMAC: Security without collision-resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Heidelberg (2006) · Zbl 1161.68437
[2] Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996) · Zbl 1329.94051
[3] Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The cascade construction and its concrete security. In: FOCS 1996, pp. 514–523 (1996)
[4] Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: FOCS 1997, pp. 394–403 (1997)
[5] Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining message authentication code. Journal of Computer and System Sciences 61(3), 362–399 (2000) · Zbl 0970.68054
[6] Bellare, M., Kohno, T.: Hash function balance and its impact on birthday attacks. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 401–418. Springer, Heidelberg (2004) · Zbl 1122.94351
[7] Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000) · Zbl 0973.68059
[8] Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and secure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 216–233. Springer, Heidelberg (1999) · Zbl 0940.94020
[9] Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and System Sciences 18(2), 143–154 (1979) · Zbl 0412.68090
[10] Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990) · Zbl 0724.68029
[11] Damgård, I.B., Nielsen, J.B.: Expanding pseudorandom functions; or: From known-plaintext security to chosen-plaintext security. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 449–464. Springer, Heidelberg (2002) · Zbl 1027.68056
[12] Fischlin, M.: Security of NMAC and HMAC based on non-malleability. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 138–154. Springer, Heidelberg (2008) · Zbl 1153.94376
[13] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In: FOCS 1984, pp. 464–479 (1984) · Zbl 0596.65002
[14] Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999) · Zbl 0940.68048
[15] Hirose, S., Park, J.H., Yun, A.: A simple variant of the Merkle-Damgård scheme with a permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 113–129. Springer, Heidelberg (2007) · Zbl 1153.94389
[16] Katz, J., Yung, M.: Complete characterization of security notions for probabilistic private-key encryption. In: STOC 2000, pp. 245–254 (2000) · Zbl 1296.94122
[17] Maurer, U., Sjödin, J.: A fast and key-efficient reduction of chosen-ciphertext to known-plaintext security. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 498–516. Springer, Heidelberg (2007) · Zbl 1141.94364
[18] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)
[19] Naor, M., Reingold, O.: Synthesizers and their application to the parallel construction of pseudo-random functions. Journal of Computer and System Sciences 58(2), 336–375 (1999) · Zbl 0922.68052
[20] Pietrzak, K., Sjödin, J.: Range extension for weak PRFs; the good, the bad, and the ugly. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 517–533. Springer, Heidelberg (2007) · Zbl 1141.94370
[21] Stinson, D.R.: Universal hashing and authentication codes. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 74–85. Springer, Heidelberg (1992) · Zbl 0789.68050
[22] Yasuda, K.: Boosting Merkle-Damgård hashing for message authentication. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 216–231. Springer, Heidelberg (2007) · Zbl 1153.94440
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.