×

zbMATH — the first resource for mathematics

D5-brane type I superstring background fields in terms of type IIB ones by canonical method and T-duality approach. (English) Zbl 1206.81108
Summary: We consider type IIB superstring theory with embedded \(D5\)-brane and choose boundary conditions which preserve half of the initial supersymmetry. In the canonical approach that we use, boundary conditions are treated as canonical constraints. The effective theory, obtained from the initial one on the solution of boundary conditions, has the form of the type I superstring theory with embedded \(D5\)-brane. We obtain the expressions for \(D5\)-brane background fields of type I theory in terms of the \(D5\)-brane background fields of type IIB theory. We show that beside known \(\Omega \) even fields, they contain squares of \(\Omega \) odd ones, where \(\Omega \) is world-sheet parity transformation, \(\Omega :\sigma \rightarrow - \sigma \). We relate result of this paper and the results of Nikolić and Sazdović (2008) using T-dualities along four directions orthogonal to \(D5\)-brane.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Nikolić, B.; Sazdović, B., Phys. lett. B, 666, 400, (2008)
[2] Polchinski, J.; Becker, K.; Becker, M.; Schwarz, J.H., String theory and M-theory - A modern introduction, (2007), Cambridge University Press · Zbl 1123.81001
[3] Berkovits, N.; Grassi, P.A.; Policastro, G.; van Nieuwenhuizen, P.; Grassi, P.A.; Policastro, G.; van Nieuwenhuizen, P.; Grassi, P.A.; Policastro, G.; van Nieuwenhuizen, P.; Grassi, P.A.; Policastro, G.; van Nieuwenhuizen, P., Jhep, Jhep, Adv. theor. math. phys., Phys. lett. B, 553, 96, (2003)
[4] de Boer, J.; Grassi, P.A.; van Nieuwenhuizen, P., Phys. lett. B, 574, 98, (2003)
[5] Berkovits, N.; Howe, P., Nucl. phys. B, 635, 75, (2002)
[6] Duff, M.J.; Khuri, Ramzi R.; Lu, J.X., Phys. rep., 259, 213, (1995)
[7] Kiritsis, E., Introduction to superstring theory, (1998), Leuven University Press
[8] Seiberg, N.; Witten, E., Jhep, 9909, 032, (1999)
[9] Buscher, T.H.; Giveon, A.; Porrati, M.; Rabinovici, E.; Benichou, R.; Policastro, G.; Troost, J., Phys. lett. B, Phys. rep., Phys. lett. B, 661, 192, (2008)
[10] Nikolić, B.; Sazdović, B., Adv. theor. math. phys., 14, 1, (2010)
[11] Sazdović, B.; Nikolić, B.; Sazdović, B., Eur. phys. J. C, Phys. rev. D, 74, 045024, (2006)
[12] Nikolić, B.; Sazdović, B., Phys. rev. D, 75, 085011, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.