zbMATH — the first resource for mathematics

MLPG method for two-dimensional diffusion equation with Neumann’s and non-classical boundary conditions. (English) Zbl 1206.65229
Summary: A meshless local Petrov-Galerkin (MLPG) method is presented to treat parabolic partial differential equations with Neumann’s and non-classical boundary conditions. A difficulty in implementing the MLPG method is imposing boundary conditions. To overcome this difficulty, two new techniques are presented to use on square domains. These techniques are based on the finite differences and the moving least squares (MLS) approximations. The non-classical integral boundary condition is approximated using Simpson’s composite numerical integration rule and the MLS approximation. Two test problems are presented to verify the efficiency and accuracy of the method.

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Alves, M.K.; Rossi, R., A modified element-free Galerkin method with essential boundary conditions enforced by an extended partition of unity finite element weight function, Internat. J. numer. methods engrg., 57, 1523-1552, (2003) · Zbl 1062.74648
[2] Atluri, S.N., The meshless method (MLPG) for domain and BIE discretizations, (2004), Tech. Science Press · Zbl 1105.65107
[3] Atluri, S.N.; Shen, S., The meshless local Petrov-Galerkin (MLPG) method, (2002), Tech. Science Press · Zbl 1012.65116
[4] Atluri, S.N.; Shen, S., The meshless local Petrov-Galerkin (MLPG) method: a simple and less costly alternative to the finite element and boundary element methods, Comput. modeling engrg. sci., 3, 11-51, (2002) · Zbl 0996.65116
[5] Atluri, S.N.; Zhu, T.L., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. mech., 22, 117-127, (1998) · Zbl 0932.76067
[6] Atluri, S.N.; Zhu, T.L., A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation, Comput. modeling simulation engrg., 3, 187-196, (1998)
[7] Batra, R.C.; Porfiri, M.; Spinello, D., Free and forced vibrations of a segmented bar by a meshless local Petrov-Galerkin (MLPG) formulation, Comput. mech., 41, 473-491, (2008) · Zbl 1162.74494
[8] Cannon, J.R.; Lin, Y., An inverse problem of finding a parameter in a semi-linear heat equation, J. math. anal. appl., 145, 2, 470-484, (1990) · Zbl 0727.35137
[9] Cannon, J.R.; Lin, Y.; Matheson, A.L., The solution of the diffusion equation in two-space variables subject to the specification of mass, Appl. anal., 50, 1-19, (1993) · Zbl 0795.35137
[10] Cannon, J.R.; van der Hoek, J., Diffusion subject to specification of mass, J. math. anal. appl., 115, 517-529, (1986) · Zbl 0602.35048
[11] Capsso, V.; Kunisch, K., A reaction-diffusion system arising in modeling man-environment diseases, Quart. appl. math., 46, 431-449, (1988) · Zbl 0704.35069
[12] Chen, T.; Raju, I.S., A coupled finite element and meshless local Petrov-Galerkin method for two-dimensional potential problems, Comput. methods appl. mech. engrg., 192, 4533-4550, (2003) · Zbl 1037.65115
[13] Cheng, Rongjun; Cheng, Yumin, Error estimates for the finite point method, Appl. numer. math., 58, 884-898, (2008) · Zbl 1145.65086
[14] Choi, Y.S.; Chan, K.Y., A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear anal. theory methods appl., 18, 4, 317-331, (1992) · Zbl 0757.35031
[15] Day, W.A., Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories, Quart. appl. math., 40, 319-330, (1982) · Zbl 0502.73007
[16] Day, W.A., A decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories, Quart. appl. math., XLIV, 468-475, (1983) · Zbl 0514.35038
[17] Dehghan, M., Second-order schemes for a boundary value problem with Neumann’s boundary conditions, J. comput. appl. math., 138, 173-184, (2002) · Zbl 0993.65089
[18] Dehghan, M.; Mirzaei, D., Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity, Appl. numer. math., 59, 1043-1058, (2009) · Zbl 1159.76034
[19] Fairweather, G.; Saylor, R.D., The reformulation and numerical solution of certain nonclassical initial-boundary value problems, SIAM J. sci. statist. comput., 12, 127-144, (1991) · Zbl 0722.65062
[20] Lin, Y., An inverse problem for a class of quasilinear parabolic equations, SIAM J. math. anal., 22, 146-156, (1991) · Zbl 0739.35106
[21] Mazzia, A.; Ferronato, M.; Pini, G.; Gambolati, G., A comparison of numerical integration rules for the meshless local Petrov-Galerkin method, Numer. algorithms, 45, 61-74, (2007) · Zbl 1125.65104
[22] Mirzaei, D.; Dehghan, M., Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation, J. comput. appl. math., 233, 2737-2754, (2010) · Zbl 1183.65113
[23] Mirzaei, D.; Dehghan, M., A meshless based method for solution of integral equations, Appl. numer. math., 60, 245-262, (2010) · Zbl 1202.65174
[24] Nguyen, V.P.; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: A review and computer implementation aspects, Math. comput. simulation, 79, 763-813, (2008) · Zbl 1152.74055
[25] Qian, L.F.; Batra, R.C., Three-dimensional transient heat conduction in a functionally graded thick plate with a higher-order plate theory and a meshless local Petrov-Galerkin method, Comput. mech., 35, 214-226, (2005) · Zbl 1143.74321
[26] Sladek, J.; Sladek, V.; Atluri, S.N., Meshless local Petrov-Galerkin method for heat conduction problem in an anisotropic medium, CMES comput. model. eng. sci., 6, 309-318, (2004) · Zbl 1084.80002
[27] Sladek, J.; Sladek, V.; Hellmich, Ch.; Eberhardsteiner, J., Heat conduction analysis of 3D axisymmetric and anisotropic FGM bodies by meshless local Petrov-Galerkin method, Comput. mech., 39, 323-333, (2007) · Zbl 1169.80001
[28] Sladek, J.; Sladek, V.; Krivacek, J.; Zhang, Ch., Local BIEM for transient heat conduction analysis in 3-D axisymmetric functionally graded solids, Comput. mech., 32, 169-176, (2003) · Zbl 1038.80510
[29] Sladek, J.; Sladek, V.; Tan, C.L.; Atluri, S.N., Analysis of transient heat conduction in 3D anisotropic functionally graded solids by the MLPG, Comput. modeling engrg. sci., 32, 161-174, (2008) · Zbl 1232.80006
[30] Sladek, V.; Sladek, J.; Tanaka, M.; Zhang, Ch., Transient heat conduction in anisotropic and functionally graded media by local integral equations, Engrg. anal. bound. elem., 29, 1047-1065, (2005) · Zbl 1182.80016
[31] Sladek, J.; Sladek, V.; Wen, P.H.; Hon, Y.C., Inverse fracture problems in piezoelectric solids by local integral equation method, Engrg. anal. bound. elem., 33, 1089-1099, (2009) · Zbl 1244.74123
[32] Sladek, J.; Sladek, V.; Zhang, Ch., Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method, Comput. mater. sci., 28, 494-504, (2003)
[33] Sladek, J.; Sladek, V.; Zhang, Ch.; Schanz, M., Meshless local Petrov-Galerkin method for continuously nonhomogeneous linear viscoelastic solids, Comput. mech., 37, 279-289, (2006) · Zbl 1103.74058
[34] Vavourakis, V.; Polyzos, D., A MLPG (LBIE) numerical method for solving 2D incompressible and nearly incompressible elastostatic problems, Comm. numer. methods engrg., 24, 281-296, (2008) · Zbl 1419.74263
[35] Wang, S., The numerical method for the conduction subject to moving boundary energy specification, Numer. heat transfer, 130, 35-38, (1990)
[36] Wang, Q.X.; Li, H.; Lam, K.Y., Analysis of microelectromechanical systems (mems) devices by the meshless point weighted least-squares method, Comput. mech., 40, 1-11, (2007) · Zbl 1175.74060
[37] Wang, S.; Lin, Y., A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equations, Inverse problems, 5, 631-640, (1989) · Zbl 0683.65106
[38] Wang, S.; Lin, Y., A numerical method for the diffusion equation with nonlocal boundary specifications, Internat. J. engrg. sci., 28, 543-546, (1990) · Zbl 0718.76096
[39] Zuppa, C., Error estimates for moving least square approximations, Bull. braz. math. soc. (N.S.), 34, 231-249, (2003) · Zbl 1056.41007
[40] Zuppa, Carlos, Good quality point sets and error estimates for moving least square approximations, Appl. numer. math., 47, 575-585, (2003) · Zbl 1040.65034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.