×

zbMATH — the first resource for mathematics

Monotone generalized contractions in partially ordered probabilistic metric spaces. (English) Zbl 1206.54039
A concept of monotone generalized contraction in partially ordered probabilistic metric spaces is introduced and some remarkable fixed and common fixed point theorems are proved.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agarwal, R.P.; El-Gebeily, M.A.; O’Regan, D., Generalized contractions in partially ordered metric spaces, Appl. anal., 87, 1-8, (2008) · Zbl 1140.47042
[2] Gnana Bhaskar, T.; Lakshmikantham, V., Fixed point theorems in partially ordered metric spaces and applications, Nonlinear anal., 65, 1379-1393, (2006) · Zbl 1106.47047
[3] Gnana Bhaskar, T.; Lakshmikantham, V.; Vasundhara Devi, J., Monotone iterative technique for functional differential equations with retardation and anticipation, Nonlinear anal., 66, 10, 2237-2242, (2007) · Zbl 1121.34065
[4] Ćirić, L.B., A generalization of Banach’s contraction principle, Proc. amer. math. soc., 45, 267-273, (1974) · Zbl 0291.54056
[5] Ćirić, L.B., Coincidence and fixed points for maps on topological spaces, Topology appl., 154, 3100-3106, (2007) · Zbl 1132.54024
[6] Ćirić, L.B.; Ješić, S.N.; Milovanović, M.M.; Ume, J.S., On the steepest descent approximation method for the zeros of generalized accretive operators, Nonlinear anal., 69, 763-769, (2008) · Zbl 1220.47089
[7] Fang, J.X.; Gao, Y., Common fixed point theorems under strict contractive conditions in Menger spaces, Nonlinear anal., 70, 184-193, (2009) · Zbl 1170.47061
[8] Hadžić, O.; Pap, E., Fixed point theory in PM spaces, (2001), Kluwer Academic Publ.
[9] Hussain, N., Common fixed points in best approximation for Banach operator pairs with ćirić type I-contractions, J. math. anal. appl., 338, 1351-1363, (2008) · Zbl 1134.47039
[10] Khamsi, M.A.; Kreinovich, V.Y., Fixed point theorems for dissipative mappings in complete probabilistic metric spaces, Math. jap., 44, 513-520, (1996) · Zbl 0904.54033
[11] Lakshmikantham, V.; Ćirić, L.B., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear anal., 70, 2009, 4341-4349, (2009) · Zbl 1176.54032
[12] Lakshmikantham, V.; Mohapatra, R.N., Theory of fuzzy differential equations and inclusions, (2003), Taylor & Francis London · Zbl 1072.34001
[13] Lakshmikantham, V.; Koksal, S., Monotone flows and rapid convergence for nonlinear partial differential equations, (2003), Taylor & Francis · Zbl 1017.35001
[14] Lakshmikantham, V.; Vatsala, A.S., General uniqueness and monotone iterative technique for fractional differential equations, Appl. math. lett., 21, 8, 828-834, (2008) · Zbl 1161.34031
[15] Liu, Z.Q.; Guo, Z.N.; Kang, S.M.; Lee, S.K., On ćirić type mappings with nonunique fixed and periodic points, Int. J. pure appl. math., 26, 3, 399-408, (2006) · Zbl 1100.54028
[16] Miheţ, D., Multivalued generalizations of probabilistic contractions, J. math. anal. appl., 304, 464-472, (2005) · Zbl 1072.47066
[17] Miheţ, D., On the existence and the uniqueness of fixed points of sehgal contractions, Fuzzy sets and systems, 156, 135-141, (2005) · Zbl 1082.54022
[18] Miheţ, D., Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy sets and systems, 159, 739-744, (2008) · Zbl 1171.54330
[19] Miheţ, D., Altering distances in probabilistic Menger spaces, Nonlinear anal., 71, 2734-2738, (2009) · Zbl 1176.54034
[20] Nieto, J.J.; Rodriguez-Lopez, R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22, 223-239, (2005) · Zbl 1095.47013
[21] Nieto, J.J.; Lopez, R.R., Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta math. sin. (engl. ser.), 23, 2205-2212, (2007) · Zbl 1140.47045
[22] O’Regan, D.; Saadati, R., Nonlinear contraction theorems in probabilistic spaces, Appl. math. comput., 195, 86-93, (2008) · Zbl 1135.54315
[23] Petruşel, A.; Rus, I.A., Fixed point theorems in ordered L-spaces, Proc. amer. math. soc., 134, 411-418, (2006) · Zbl 1086.47026
[24] Ran, A.C.M.; Reurings, M.C.B., A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. amer. math. soc., 132, 1435-1443, (2004) · Zbl 1060.47056
[25] Sehgal, V.M.; Bharucha-Reid, A.T., Fixed points of contraction mappings on probabilistic metric spaces, Math. syst. theory, 6, 97-102, (1972) · Zbl 0244.60004
[26] Singh, S.L.; Mishra, S.N., On a ljubomir ćirić’s fixed point theorem for nonexpansive type maps with applications, Indian J. pure appl. math., 33, 531-542, (2002) · Zbl 1030.47042
[27] Schweizer, B.; Sklar, A., Probabilistic metric spaces, (1983), Elsevier/North-Holland New York · Zbl 0546.60010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.