×

Exploring the fractal parameters of urban growth and form with wave-spectrum analysis. (English) Zbl 1205.91140

Summary: The Fourier transform and spectral analysis are employed to estimate the fractal dimension and explore the fractal parameter relations of urban growth and form using mathematical experiments and empirical analyses. Based on the models of urban density, two kinds of fractal dimensions of urban form can be evaluated with the scaling relations between the wave number and the spectral density. One is the radial dimension of self-similar distribution indicating the macro-urban patterns, and the other, the profile dimension of self-affine tracks indicating the micro-urban evolution. If a city’s growth follows the power law, the summation of the two dimension values may be a constant under certain condition. The estimated results of the radial dimension suggest a new fractal dimension, which can be termed “image dimension”. A dual-structure model named particle-ripple model (PRM) is proposed to explain the connections and differences between the macro and micro levels of urban form.

MSC:

91D10 Models of societies, social and urban evolution
37N40 Dynamical systems in optimization and economics
65T60 Numerical methods for wavelets
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] P. J. Taylor, Quantitative Methods in Geography: An Introduction to Spatial Analysis, Waveland Press, Long Grove, Ill, USA, 3rd edition, 1983.
[2] S. L. Arlinghaus, “Fractals take a central place,” Geografiska Annaler, Series B, vol. 67, no. 2, pp. 83-88, 1985.
[3] M. Batty and P. A. Longley, “Urban shapes as fractals,” Area, vol. 19, no. 3, pp. 215-221, 1987.
[4] L. Benguigui and M. Daoud, “Is the suburban railway system a fractal?” Geographical Analysis, vol. 23, no. 4, pp. 362-368, 1991.
[5] P. Frankhauser and R. Sadler, “Fractal analysis of agglomerations,” in Natural Structures: Principles, Strategies, and Models in Architecture and Nature, M. Hilliges, Ed., pp. 57-65, University of Stuttgart, Stuttgart, Germany, 1991.
[6] M. F. Goodchild and D. M. Mark, “The fractal nature of geographic phenomena,” Annals of Association of American Geographers, vol. 77, no. 2, pp. 265-278, 1987. · doi:10.1111/j.1467-8306.1987.tb00158.x
[7] A. S. Fotheringham, M. Batty, and P. A. Longley, “Diffusion-limited aggregation and the fractal nature of urban growth,” Papers of the Regional Science Association, vol. 67, no. 1, pp. 55-69, 1989. · doi:10.1007/BF01934667
[8] M. Batty and P. A. Longley, Fractal Cities: A Geometry of Form and Function, Academic Press, London, UK, 1994. · Zbl 0852.58063
[9] P. Frankhauser, La Fractalité des Structures Urbaines, Economica, Paris, France, 1994.
[10] L. Benguigui, D. Czamanski, M. Marinov, and Y. Portugali, “When and where is a city fractal?” Environment and Planning B, vol. 27, no. 4, pp. 507-519, 2000. · doi:10.1068/b2617
[11] L. Benguigui, E. Blumenfeld-Lieberthal, and D. Czamanski, “The dynamics of the Tel Aviv morphology,” Environment and Planning B, vol. 33, no. 2, pp. 269-284, 2006. · doi:10.1068/b31118
[12] Y. G. Chen, Fractal Urban Systems: Scaling, Symmetry, and Spatial Complexity, Scientific Press, Beijing, China, 2008.
[13] J. Cooper and R. Oskrochi, “Fractal analysis of street vistas: a potential tool for assessing levels of visual variety in everyday street scenes,” Environment and Planning B, vol. 35, no. 2, pp. 349-363, 2008. · doi:10.1068/b33081
[14] A. Crompton, “The fractal nature of the everyday environment,” Environment and Planning B, vol. 28, no. 2, pp. 242-254, 2001.
[15] M.-L. De Keersmaecker, P. Frankhauser, and I. Thomas, “Using fractal dimensions for characterizing intra-urban diversity: the example of Brussels,” Geographical Analysis, vol. 35, no. 4, pp. 310-328, 2003. · doi:10.1353/geo.2003.0014
[16] D. S. Dendrinos and M. S. El Naschie, “Nonlinear dynamics in urban and transportation analysis,” Chaos, Soliton & Fractals, vol. 4, no. 4, pp. 497-617, 1994. · Zbl 0925.90181 · doi:10.1016/0960-0779(94)90061-2
[17] K. S. Kim, L. Benguigui, and M. Marinov, “The fractal structure of Seoul’s public transportation system,” Cities, vol. 20, no. 1, pp. 31-39, 2003. · doi:10.1016/S0264-2751(02)00094-X
[18] Y. Lu and J. Tang, “Fractal dimension of a transportation network and its relationship with urban growth: a study of the Dallas-Fort Worth area,” Environment and Planning B, vol. 31, no. 6, pp. 895-911, 2004. · doi:10.1068/b3163
[19] I. Thomas, P. Frankhauser, and M.-L. De Keersmaecker, “Fractal dimension versus density of built-up surfaces in the periphery of Brussels,” Papers in Regional Science, vol. 86, no. 2, pp. 287-308, 2007. · doi:10.1111/j.1435-5957.2007.00122.x
[20] I. Thomas, P. Frankhauser, and C. Biernacki, “The morphology of built-up landscapes in Wallonia (Belgium): a classification using fractal indices,” Landscape and Urban Planning, vol. 84, no. 2, pp. 99-115, 2008. · doi:10.1016/j.landurbplan.2007.07.002
[21] M. Batty, Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals, MIT Press, London, UK, 2005.
[22] M. Batty and Y. Xie, “Self-organized criticality and urban development,” Discrete Dynamics in Nature and Society, vol. 3, no. 2-3, pp. 109-124, 1999. · Zbl 1079.91575 · doi:10.1155/S1026022699000151
[23] R. White and G. Engelen, “Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns,” Environment & Planning A, vol. 25, no. 8, pp. 1175-1199, 1993. · doi:10.1068/a251175
[24] R. White and G. Engelen, “Urban systems dynamics and cellular automata: fractal structures between order and chaos,” Chaos, Solitons & Fractals, vol. 4, no. 4, pp. 563-583, 1994. · Zbl 0796.92032 · doi:10.1016/0960-0779(94)90066-3
[25] R. White, G. Engelen, and I. Uljee, “The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics,” Environment and Planning B, vol. 24, no. 3, pp. 323-343, 1997. · doi:10.1068/b240323
[26] H. Takayasu, Fractals in the Physical Sciences, Nonlinear Science: Theory and Applications, Manchester University Press, Manchester, UK, 1990. · Zbl 0689.58001
[27] Y. Chen, “Urban gravity model based on cross-correlation function and Fourier analyses of spatio-temporal process,” Chaos, Solitons & Fractals, vol. 41, no. 2, pp. 603-614, 2009. · doi:10.1016/j.chaos.2008.02.030
[28] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company, New York, NY, USA, 1983.
[29] P. Frankhauser, “The fractal approach: a new tool for the spatial analysis of urban agglomerations,” Population: An English Selection, vol. 10, no. 1, pp. 205-240, 1998.
[30] M. Batty, “The size, scale, and shape of cities,” Science, vol. 319, no. 5864, pp. 769-771, 2008. · doi:10.1126/science.1151419
[31] P. A. Longley, M. Batty, and J. Shepherd, “The size, shape and dimension of urban settlements,” Transactions of the Institute of British Geographers, vol. 16, no. 1, pp. 75-94, 1991. · doi:10.2307/622907
[32] M. T. Cadwallader, Urban Geography: An Analytical Approach, Prentice Hall, Upper Saddle River, NJ, USA, 1996.
[33] Y. G. Chen, “A new model of urban population density indicating latent fractal structure,” International Journal of Urban Sustainable Development, vol. 1, no. 1, pp. 89-110, 2009. · doi:10.1080/19463131003661025
[34] C. Clark, “Urban population densities,” Journal of Royal Statistical Society, vol. 114, no. 4, pp. 490-496, 1951.
[35] M. Batty and K. S. Kim, “Form follows function: reformulating urban population density functions,” Urban Studies, vol. 29, no. 7, pp. 1043-1069, 1992. · doi:10.1080/00420989220081041
[36] R. J. Smeed, “Road development in urban area,” Journal of the Institution of Highway Engineers, vol. 10, no. 1, pp. 5-30, 1963.
[37] Y. G. Chen, “A wave-spectrum analysis of urban population density: entropy, fractal, and spatial localization,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 728420, 22 pages, 2008. · Zbl 1159.91471 · doi:10.1155/2008/728420
[38] S. D. Liu and S. K. Liu, An Introduction to Fractals and Fractal Dimension, China Meteorological Press, Beijing, China, 1992.
[39] M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H.-O. Peitgen, D. Saupe, and R. F. Voss, The Science of Fractal Images, Springer, New York, NY, USA, 1988. · Zbl 0683.58003
[40] H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals, Springer, New York, NY, USA, 2nd edition, 2004. · Zbl 1036.37001
[41] Benoit B. Mandelbrot, Multifractals and 1/f Noise: Wild Self-Affinity in Physics (1963-1976), Springer, New York, NY, USA, 1999.
[42] J. Feder, Fractals, Plenum Press, New York, NY, USA, 1988. · Zbl 0648.28006
[43] H. E. Hurst, R. P. Black, and Y. M. Simaika, Long-term Storage: An Experimental Study, Constable, London, UK, 1965.
[44] M. Batty, P. Longley, and S. Fotheringham, “Urban growth and form: scaling, fractal geometry, and diffusion- limited aggregation,” Environment & Planning A, vol. 21, no. 11, pp. 1447-1472, 1989. · doi:10.1068/a211447
[45] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian motions, fractional noises and applications,” SIAM Review, vol. 10, no. 4, pp. 422-437, 1968. · Zbl 0179.47801 · doi:10.1137/1010093
[46] D. A. Griffith, Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization, Springer, New York, NY, USA, 2003.
[47] Y. Chen and Y. Zhou, “Scaling laws and indications of self-organized criticality in urban systems,” Chaos, Solitons & Fractals, vol. 35, no. 1, pp. 85-98, 2008. · doi:10.1016/j.chaos.2006.05.018
[48] F. X. Diebold, Elements of Forecasting, Thomson/South-Western, Mason, Ohio, USA, 3rd edition, 2004.
[49] R. W. Hamming, Numerical Methods for Scientists and Engineers, International Series in Pure and Applied Mathematics, McGraw-Hill, New York, NY, USA, 1962. · Zbl 0952.65500
[50] R. White, “Cities and cellular automata,” Discrete Dynamics in Nature and Society, vol. 2, no. 2, pp. 111-125, 1998. · doi:10.1155/S1026022698000090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.