×

zbMATH — the first resource for mathematics

A robust optimization approach to closed-loop supply chain network design under uncertainty. (English) Zbl 1205.90056
Summary: The concern about significant changes in the business environment (such as customer demands and transportation costs) has spurred an interest in designing scalable and robust supply chains. This paper proposes a robust optimization model for handling the inherent uncertainty of input data in a closed-loop supply chain network design problem. First, a deterministic mixed-integer linear programming model is developed for designing a closed-loop supply chain network. Then, the robust counterpart of the proposed mixed-integer linear programming model is presented by using the recent extensions in robust optimization theory. Finally, to assess the robustness of the solutions obtained by the novel robust optimization model, they are compared to those generated by the deterministic mixed-integer linear programming model in a number of realizations under different test problems.

MSC:
90B06 Transportation, logistics and supply chain management
90C11 Mixed integer programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amiri, A., Designing a distribution network in a supply chain system: formulation and efficient solution procedure, Eur. J. oper. res., 171, 567-576, (2006) · Zbl 1090.90024
[2] Üster, H.; Easwaran, G.; Akçali, E.; Çetinkaya, S., Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model, Nav. res. log., 54, 890-907, (2007) · Zbl 1135.90362
[3] Meade, L.; Sarkis, J.; Presley, A., The theory and practice of reverse logistics, Int. J. log. syst. manage., 3, 56-84, (2007)
[4] Meepetchdee, Y.; Shah, N., Logistical network design with robustness and complexity considerations, Int. J. phys. distrib. log. manage., 37, 201-222, (2007)
[5] Listes, O.; Dekker, R., A stochastic approach to a case study for product recovery network design, Eur. J. oper. res., 160, 268-287, (2005) · Zbl 1134.90433
[6] Salema, M.I.G.; Barbosa-Povoa, A.P.; Novais, A.Q., An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty, Eur. J. oper. res., 179, 1063-1077, (2007) · Zbl 1163.90371
[7] Charnes, A.; Cooper, W.W., Chance-constrained programming, Manage. sci., 6, 73-79, (1959) · Zbl 0995.90600
[8] Santoso, T.; Ahmed, S.; Goetschalckx, M.; Shapiro, A., A stochastic programming approach for supply chain network design under uncertainty, Eur. J. oper. res., 167, 96-115, (2005) · Zbl 1075.90010
[9] Xu, N.; Nozick, L., Modeling supplier selection and the use of option contracts for global supply chain design, Comput. oper. res., 36, 2786-2800, (2009) · Zbl 1160.90325
[10] Alonso-Ayuso, A.; Escudero, L.; Garı´n, A.; Ortuño, M.; Pérez, G., An approach for strategic supply chain planning under uncertainty based on stochastic 0-1 programming, J. global optim., 26, 97-124, (2003) · Zbl 1116.90383
[11] Schütz, P.; Tomasgard, A.; Ahmed, S., Supply chain design under uncertainty using sample average approximation and dual decomposition, Eur. J. oper. res., 199, 409-419, (2009) · Zbl 1176.90447
[12] Ben-Tal, A.; Nemirovski, A., Selected topics in robust convex optimization, Math. program., 112, 125-158, (2008) · Zbl 1135.90046
[13] Soyster, A., Convex programming with set-inclusive constraints and applications to inexact linear programming, Oper. res., 21, 1154-1157, (1973) · Zbl 0266.90046
[14] Ben-Tal, A.; Nemirovski, A., Robust convex optimization, Math. oper. res., 2, 769-805, (1998) · Zbl 0977.90052
[15] Ben-Tal, A.; Nemirovski, A., Robust solutions of linear programming problems contaminated with uncertain data, Math. program., 88, 411-424, (2000) · Zbl 0964.90025
[16] El-Ghaoui, L.; Oustry, F.; Lebret, H., Robust solutions to uncertain semidefinite programs, SIAM J. optim., 9, 33-52, (1998) · Zbl 0960.93007
[17] Adida, E.; Perakis, G., A robust optimization approach to dynamic pricing and inventory control with no backorders, Math. program., 107, 97-129, (2006) · Zbl 1134.90002
[18] El-Ghaoui, L.; Oks, M.; Oustry, F., Worst-case value-at-risk and robust portfolio optimization: a conic programming approach, Oper. res., 51, 543-556, (2003) · Zbl 1165.91397
[19] Pishvaee, M.S.; Farahani, R.Z.; Dullaert, W., A memetic algorithm for bi-objective integrated forward/reverse logistics network design, Comput. oper. res., 37, 1100-1112, (2010) · Zbl 1178.90060
[20] Melo, M.T.; Nickel, S.; Saldanha-da-Gama, F., Facility location and supply chain management – a review, Eur. J. oper. res., 196, 401-412, (2009) · Zbl 1163.90341
[21] Klibi, W.; Martel, A.; Guitouni, A., The design of robust value-creating supply chain networks: a critical review, Eur. J. oper. res., 203, 283-293, (2010) · Zbl 1177.90054
[22] Fleischmann, M.; Bloemhof-Ruwaard, J.; Dekker, R.; van der Laan, E.; van Nunen, J.; van Wassenhove, L., Quantitative models for reverse logistics: a review, Eur. J. oper. res., 103, 1-17, (1997) · Zbl 0920.90057
[23] Barros, A.I.; Dekker, R.; Scholten, V., A two-level network for recycling sand: a case study, Eur. J. oper. res., 110, 199-214, (1998) · Zbl 0948.90087
[24] Jayaraman, V.; Guige, V.D.R.; Srivastava, R., A closed-loop logistics model for manufacturing, J. oper. res. soc., 50, 497-508, (1999) · Zbl 1054.90521
[25] Krikke, H.R.; Van Harten, A.; Schuur, P.C., Reverse logistic network re-design for copiers, OR spektrum, 21, 381-409, (1999) · Zbl 0940.90011
[26] Jayaraman, V.; Patterson, R.A.; Rolland, E., The design of reverse distribution networks: models and solution procedures, Eur. J. oper. res., 150, 128-149, (2003) · Zbl 1023.90501
[27] Min, H.; Ko, C.S.; Ko, H.J., The spatial and temporal consolidation of returned products in a closed-loop supply chain network, Comput. ind. eng., 51, 309-320, (2006)
[28] Aras, N.; Aksen, D.; Tanugur, A.G., Locating collection centers for incentive-dependent returns under a Pick-up policy with capacitated vehicles, Eur. J. oper. res., 191, 1223-1240, (2008) · Zbl 1162.90004
[29] Pati, R.; Vrat, P.; Kumar, P., A goal programming model for paper recycling system, Omega, 36, 405-417, (2008)
[30] Lieckens, K.; Vandaele, N., Reverse logistics network design with stochastic lead times, Comput. operat. res., 34, 395-416, (2007) · Zbl 1113.90023
[31] Fleischmann, M.; Beullens, P.; Bloemhof-ruwaard, J.M.; Wassenhove, L., The impact of product recovery on logistics network design, Prod. oper. manage., 10, 156-173, (2001)
[32] Listes, O., A generic stochastic model for supply-and-return network design, Comput. oper. res., 34, 417-442, (2007) · Zbl 1113.90024
[33] Min, H.; Ko, H.J., The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers, Int. J. prod. econ., 113, 176-192, (2008)
[34] Lu, Z.; Bostel, N., A facility location model for logistics systems including reverse flows: the case of remanufacturing activities, Comput. operat. res., 34, 299-323, (2007) · Zbl 1113.90025
[35] Ben-Tal, A.; Nemirovski, A., Robust solutions to uncertain linear programs, Oper. res. lett., 25, 1-13, (1999) · Zbl 0941.90053
[36] Ben-Tal, A.; El-Ghaoui, L.; Nemirovski, A., Robust optimization, (2009), Princeton University Press · Zbl 1221.90001
[37] Ben-Tal, A.; Nemirovski, A., A robust optimization methodology and applications, Math. program. (ser. B), 92, 453-480, (2002) · Zbl 1007.90047
[38] Ben-Tal, A.; Golany, B.; Nemirovski, A.; Vial, J.P., Retailer-supplier flexible commitments contracts: a robust optimization approach, Manuf. service oper. manage., 7, 248-271, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.