# zbMATH — the first resource for mathematics

The heat transfer characteristics of liquid cooling heatsink containing microchannels. (English) Zbl 1205.80016
Summary: This paper numerically and experimentally investigates the heat transfer performance and characteristics of liquid cooling heatsink containing microchannels. The effects of channel geometry and pressure drop between the entrance and exit of heatsink on the heat transfer performance are studied. The geometrical parameters include aspect ratio and cross-sectional porosity of the channels. The height of the microchannels is considered constant. The aspect ratio is set from 1.67 to 14.29 and the porosity is from 25% to 85%. The imposed pressure drop ranges between 490 and 2940 Pa. It is found that the aspect ratio corresponding to the lowest effective thermal resistance is changed with respect to the pressure drop. It is also noticed that the value of effective thermal resistance is almost a constant for cross-sectional porosity in the range of 53%-75%. The effective thermal resistance is increased when cross-sectional porosity is deviated from this range. In addition, the increasing of pressure drop enhances heat transfer performance for channels of high aspect ratio more than those of low aspect ratio.

##### MSC:
 80A20 Heat and mass transfer, heat flow (MSC2010) 76S05 Flows in porous media; filtration; seepage 80-05 Experimental work for problems pertaining to classical thermodynamics 80M12 Finite volume methods applied to problems in thermodynamics and heat transfer 76M12 Finite volume methods applied to problems in fluid mechanics
Full Text:
##### References:
 [1] Tuckermann, D. B.; Pease, R. F. W.: High-performance heatsinking for VLSI, IEEE electronic device lett. 2, 126-129 (1981) [2] D.B. Tuckermann, R.F.W. Pease, Ultrahigh thermal conductance microstructures for integrated circuits, in: IEEE Proc. 32nd Electronics Conference, 1982, pp. 145 – 149. [3] Hoopman, T. L.: Microchanneled structures, Asme dsc 19, 171-174 (1990) [4] Peng, X. F.; Wang, B. X.; Peterson, G. P.; Ma, H. B.: Experimental investigation of heat transfer in flat plates with rectangular microchannels, Int. J. Heat mass transfer 38, 127-137 (1995) [5] Peng, X. F.; Peterson, G. P.: Friction flow characteristics of water flowing through rectangular microchannels, J. exp. Heat transfer 7, 249-264 (1995) [6] Peng, X. F.; Peterson, G. P.: Convective heat transfer and flow friction for water flow in microchannel structures, Int. J. Heat mass transfer 39, 2599-2608 (1996) [7] J. Harley, H.H. Bau, Fluid flow in micron and sub-micron size channels, in: Proc. IEEE, MEMS, 1989, pp. 25 – 28. [8] Qu, W.; Mala, G. M.; Li, D.: Heat transfer for water flow in trapezoidal silicon microcahnnels, Int. J. Heat mass transfer 43, 3925-3936 (2000) · Zbl 0958.76504 · doi:10.1016/S0017-9310(00)00045-4 [9] Rahman, M. M.: Measurements of heat transfer in microchannel heatsink, Int. comm. Heat mass transfer 27, 495-506 (2000) [10] Morini, G. L.: Single-phase convective heat transfer in microchannels: a review of experimental results, Int. J. Thermal sci. 43, 631-651 (2004) [11] Knight, R. W.; Goodling, J. S.; Hall, D. J.: Optimal thermal design of forced convection heatsinks – analytical, ASME J. Electron. packag. 113, 313-321 (1986) [12] Kim, S. J.; Kim, D.: Forced convection in microstructures for electronic equipment cooling, ASME J. Heat transfer 121, 635-645 (1999) [13] Zhao, C. Y.; Lu, T. J.: Analysis of microchannel heatsinks for electronics cooling, Int. J. Heat mass transfer 45, 4857-4869 (2002) · Zbl 1032.76680 · doi:10.1016/S0017-9310(02)00180-1 [14] Lee, P. S.; Garimella, S. V.; Liu, D.: Investigation of heat transfer in rectangular microchannels, Int. J. Heat mass transfer 48, 1688-1704 (2005) [15] Ryu, J. H.; Choi, D. H.; Kim, S. J.: Numerical optimization of the thermal performance of a microchannel heatsink, Int. J. Heat mass transfer 45, 2823-2827 (2002) · Zbl 1101.76325 · doi:10.1016/S0017-9310(02)00006-6 [16] Wu, H. Y.; Chang, P.: An experimental study of convective heat transfer in silicon microchannels with different surface conditions, Int. J. Heat mass transfer 46, 2547-2556 (2003) [17] Foli, K.; Okabe, T.; Olhofer, M.; Jin, Yaochu; Sendhoff, B.: Optimization of the micro heat exchanger: CFD, analytical approach and multi-objective evolutionary algorithms, Int. J. Heat mass transfer 49, 1090-1099 (2005) · Zbl 1189.76446 · doi:10.1016/j.ijheatmasstransfer.2005.08.032 [18] Li, J.; Peterson, G. P.: 3-dimensional numerical optimization of silicon-based high performance parallel microchannel heatsink with liquid flow, Int. J. Heat mass transfer 50, 2895-2904 (2007) · Zbl 1119.80334 · doi:10.1016/j.ijheatmasstransfer.2007.01.019 [19] Chen, C. H.: Forced convection heat transfer in microchannel heatsinks, Int. J. Heat mass transfer 50, 2182-2189 (2007) · Zbl 1124.80314 · doi:10.1016/j.ijheatmasstransfer.2006.11.001 [20] Kou, H. S.; Lee, J. J.; Chen, C. W.: Optimal thermal performance of microchannel heatsink by adjusting channel width and height, Int. commun. Heat mass transfer 35, 577-582 (2008) [21] Xie, X. L.; Liu, Z. J.; He, Y. L.; Tao, W. Q.: Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink, Appl. thermal eng. 29, 64-74 (2009) [22] Cengel, Y. A.; Cimbala, J. M.: Fluid mechanics, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.