×

Evaluating the effect of dislocation on the photovoltaic performance of metamorphic tandem solar cells. (English) Zbl 1205.78051

Summary: The photovoltaic conversion efficiency for monolithic GaInP/GaInAs/Ge triple-junction cell with various bandgap combination (300 suns, AM1.5d) was theoretically calculated. An impressive improvement on conversion efficiency was observed for a bandgap combination of 1.708, 1.194, and 0.67 eV. A theoretical investigation was carried out on the effect of dislocation on the metamorphic structure’s efficiency by regarding dislocation as minority-carrier recombination center. The results showed that only when dislocation density was less than \(1.6\times 10^{6} \, \text{cm}^{-2}\), can this metamorphic combination exhibit its efficiency advantage over the fully-matched combination. In addition, we also briefly evaluated the lattice misfit dependence of the dislocation density for a group of metamorphic triple-junction system, and used it as guidance for the choice of the proper cell structure.

MSC:

78A55 Technical applications of optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Guter W, Schone J, Philipps S P, et al. Current-matched triple-junction solar cell reaching 41.1% conversioin efficiency under concentrated sunlight. Appl Phys Lett, 2009, 94(22): 223504 · doi:10.1063/1.3148341
[2] King R R, Law D C, Edmondson K M, et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl Phys Lett, 2007, 90(18): 183516 · doi:10.1063/1.2734507
[3] Geisz J F, Friedman D J, Ward J S, et al. 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Appl Phys Lett, 2008, 93(12): 123505 · doi:10.1063/1.2988497
[4] Fitzgerald E A, Currie M T, Samavedam S B, et al. Dislocations in relaxed SiGe/Si heterostructures. Phys Stat Sol (a), 1999, 171(1): 227–238 · doi:10.1002/(SICI)1521-396X(199901)171:1<227::AID-PSSA227>3.0.CO;2-Y
[5] Sasaki T, Arafune K, Metzger W, et al. Characterization of carrier recombination in lattice-mismatched InGaAs solar cells on GaAs substrates. Sol Energy Mater Sol Cells, 2009, 93(6–7): 936–940 · doi:10.1016/j.solmat.2008.11.019
[6] Dimroth F, Beckert R, Meusel M, et al. Metamorphic GaInP/GaInAs tandem solar cells for space and for terrestrial concentrator applications at C>1000 suns. Prog Photovolt: Res Appl, 2001, 9(3): 165–178 · doi:10.1002/pip.362
[7] Dimroth F, Schubert U, Bett A W. 25.5% efficient Ga0.35In0.65P/Ga0.83In0.17As tandem solar cells grown on GaAs substrates. IEEE Electron Device Lett, 2000, 21(5): 209–211 · doi:10.1109/55.841298
[8] Fetzer C M, King R R, Colter P C, et al. High-efficiency metamorphic GaInP/GaInAs/Ge solar cells grown by MOVPE. J Cryst Growth, 2004, 261(2–3): 341–348 · doi:10.1016/j.jcrysgro.2003.11.026
[9] Fetzer C M, Yoon H, King R R, et al. 1.6/1.1 eV metamorphic GaInP/GaInAs solar cells grown by MOVPE on Ge. J Cryst Growth, 2005, 276(1–2): 48–56 · doi:10.1016/j.jcrysgro.2004.11.401
[10] Kurtz S R, Faine P, Olson J M. Modeling of two-junction, series-connected tandem solar cells using top-cell thickness as an adjustable parameter. J Appl Phys, 1990, 68(4): 1890–1895 · doi:10.1063/1.347177
[11] King R R, Sherif R A, Law D C, et al. New horizons in III-V multijunction terrestrial concentrator cell research. Proc 4th Int Conf on PV Solar Energy, Dresden, Germany, 2005. 124–128
[12] Gergo L, Bett A W. EtaOpt–A program for calculating limiting efficiency and optimum bandgap structure for multi-bandgap solar cells and TPV cells. 17th European PV Solar Energy Conf, Munich, Germany), 2001. Paper VA1.25
[13] Liu L, Chen N F, Bai Y M, et al. Quantum efficiency and temperature coefficients of GaInP/GaAs dual-junction solar cell. Sci China Ser E-Tech Sci, 2009, 52(5): 1176–1180 · doi:10.1007/s11431-008-0203-9
[14] Luque A, Hegedus S. Handbook of Photovoltaic Science and Engineering. New York: John Wiley, 2003. 359
[15] http://rredc.nrel.gov/solar/spectra/am1.5/
[16] Kurtz S R, Olson J M, Friedman D J, et al. Passivation of interfaces in high-efficiency photovoltaic devices Mater Res Soc Symp Pro, 1999, 573: 95–106 · doi:10.1557/PROC-573-95
[17] Casey H C, Shell D D, Wecht K W. Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV. J Appl Phys, 1975, 46(1): 250–257 · doi:10.1063/1.321330
[18] Ghannam M Y, Poortmans J, Nijs J F, et al. Theoretical study of the impact of bulk and interface recombination on the performance of GaInP/GaAs/Ge triple junction tandem solar cells. Proc 3rd Int Conf on PV Solar Energy, Osaka, Japan, 2003. 666–669
[19] Yamaguchi M, Amano C. Efficiency calculation of thin-film GaAs solar cells on Si substrates. J Appl Phys, 1985, 58(9): 3601–3606 · doi:10.1063/1.335737
[20] Yamaguchi M, Amano C, Itoh Y. Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates. J Appl Phys, 1989, 66(2): 915–919 · doi:10.1063/1.343520
[21] Kasap S, Capper P. Handbook of Electronic and Photonic Materials: Part D Materials for Optoelectronics and Photonics: Chap 31. Heidelberg: Springer, 2007. 735
[22] Romanato F, Napolitani E, Carnera A, et al. Strain relaxation in graded composition InGaAs/GaAs buffer layer. J Appl Phys, 1999, 86(9): 4748–4755 · doi:10.1063/1.371439
[23] Gonzalez D, Araujo D, Molina S I, et al. Step-graded buffer layer study of the strain relaxation by transmission electron microscopy. Mater Sci Eng B, 1994, 28(1–3): 497–501 · doi:10.1016/0921-5107(94)90114-7
[24] Krishnamoorthy V, Lin Y W, Park R M. Application of ”critical compositional difference” concept to the growth of low dislocation density (<104/cm2) InxGa1 As (x<0.5) on GaAs. J Appl Phys, 1992, 72(5): 1752–1757 · doi:10.1063/1.351699
[25] Fitzgerald E A, Xie Y H, Green M L, et al. Totally relaxed GexSi1 layers with low threading dislocation densities grown on Si substrates. Appl Phys Lett, 1991, 59(7): 811–813 · doi:10.1063/1.105351
[26] Fitzgerald E A, Xie Y H, Monroe D, et al. Relaxed GexSi1 structures for III-V integration with Si and high mobility two-dimensional electron gases in Si. J Vac Sci Technol B, 1992, 10(4): 1807–1819 · doi:10.1116/1.586204
[27] Bett A W, Baur C, Dimroth F, et al. Metamorphic GaInP-GaInAs layers for photovoltaic applications. Materials for Photovoltaics, MRS Symposium Proceedings (Materials Research Society, Pittsburgh), 2005, 836: 223
[28] Liu Q J, Zhang R, Xie Z L, et al. Study of buffer and epitaxy technology in two-step growth of aluminium nitride. Sci China Ser E-Tech Sci, 2008, 51(11): 1881–1885 · doi:10.1007/s11431-008-0132-7
[29] Matthews J W, Mader S, Light T B. Accommodation of misfit across the interface between crystals of semiconducting elements or compounds. J Appl Phys, 1970, 41(9): 3800–3804 · doi:10.1063/1.1659510
[30] Matthews J W, Blakeslee A E. Defects in epitaxial multilayers I. Misfit dislocations. J Cryst Growth, 1974, 27(12): 118–125
[31] Yastrubchak O, Wosinski T, Domagala J Z, et al. Misfit strain anisotropy in partially relaxed lattice-mismatched InGaAs/GaAs heterostructures. J Phys: Condens Matter, 2004, 16: S1–S8 · doi:10.1088/0953-8984/16/2/001
[32] Chang K H, Bhattacharya P K, Gibala R. Characteristics of dislocations at strained heteroepitaxial InGaAs/GaAs interfaces. J Appl Phys, 1989, 66(7): 2993–2998 · doi:10.1063/1.344183
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.