×

zbMATH — the first resource for mathematics

The least squares spectral element method for the Cahn-Hilliard equation. (English) Zbl 1205.76158
Summary: The problem of numerically resolving an interface separating two different components is a common problem in several scientific and engineering applications. One alternative is to use phase field or diffuse interface methods such as the Cahn-Hilliard (C-H) equation, which introduce a continuous transition region between the two bulk phases. Different numerical schemes to solve the C-H equation have been suggested in the literature. In this work, the least squares spectral element method (LS-SEM) is used to solve the Cahn-Hilliard equation. The LS-SEM is combined with a time-space coupled formulation and a high order continuity approximation by employing \(C^{11}\) \(p\)-version hierarchical interpolation functions both in space and time. A one-dimensional case of the Cahn-Hilliard equation is solved and the convergence properties of the presented method analyzed. The obtained solution is in accordance with previous results from the literature and the basic properties of the C-H equation (i.e. mass conservation and energy dissipation) are maintained. By using the LS-SEM, a symmetric positive definite problem is always obtained, making it possible to use highly efficient solvers for this kind of problems. The use of dynamic adjustment of number of elements and order of approximation gives the possibility of a dynamic meshing procedure for a better resolution in the areas close to interfaces.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] van der Waals, J.D., The thermodynamic theory of capillarity under the hypothesis of a continuous density variation, J. stat. phys., 20, 200-244, (1979), (J.S. Rowlinson, Trans.)
[2] Cahn, J.W.; Hilliard, J.E., Free energy of a nonuniform system - I: interfacial free energy, J. chem. phys., 28, 258-267, (1958)
[3] Cahn, J.W.; Hilliard, J.E., Free energy of a nonuniform system - III: nucleation in a two-component incompressible fluid, J. chem. phys., 31, 688-699, (1959)
[4] Cahn, J.W., On spinodal decomposition, Acta metall., 9, 795-801, (1961)
[5] Jacqmin, D., Calculation of two-phase navier – stokes flows using phase field modeling, J. comput. phys., 155, 96-127, (1999) · Zbl 0966.76060
[6] Dupuy, M.P.; Fernandino, M.; Jakobsen, H.A.; Svendsen, H.F., Fractional step two-phase flow lattice Boltzmann model implementation, J. stat. mech., P06014, (2009)
[7] Wang, S.Q.; Shi, Q., Interdiffusion in bilinear polymer mixtures, Macromolecules, 26, 1091-1096, (1993)
[8] Warren, J.A.; Boettinger, W.J., Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method, Acta metall., 43, 689-703, (1995)
[9] Anderson, D.M.; McFadden, G.B.; Wheeler, A.A., Diffuse-interface methods in fluid mechanics, Annu. rev. fluid mech., 30, 139-165, (1998) · Zbl 1398.76051
[10] Copetti, M.I.M.; Elliott, C.M., Numerical analysis of the cahn – hilliard equation with a logarithmic free energy, Numer. math., 63, 39-65, (1992) · Zbl 0762.65074
[11] Bai, F.; Elliott, C.M.; Gardiner, A.; Spence, A.; Stuart, A.M., The viscous cahn – hilliard equation: part I: computations, Nonlinearity, 8, 131-160, (1995) · Zbl 0818.35045
[12] Novick-Cohen, A.; Segel, L.A., Nonlinear aspects of the cahn – hilliard equation, Physica D, 10, 277-298, (1984)
[13] Elliott, C.M.; Zheng, S.M., On the cahn – hilliard equation, Arch. ration. mech. anal., 96, 339-357, (1986) · Zbl 0624.35048
[14] de Mello, E.V.L.; Otton, T.; da Silveira, F., Numerical study of the cahn – hilliard equation in one, two and three dimensions, Physica A, 347, 429-443, (2005)
[15] Ugurlu, Y.; Kaya, D., Solutions of the cahn – hilliard equation, Comput. math. appl., 56, 3038-3045, (2008) · Zbl 1165.35451
[16] Elliott, C.M.; French, D.A., Numerical studies of the cahn – hilliard equation for phase separation, J. appl. math., 38, 97-128, (1987) · Zbl 0632.65113
[17] Elliott, C.M.; French, D.A.; Milner, F.A., A second order splitting method for the cahn – hilliard equation, Numer. math., 54, 575-590, (1989) · Zbl 0668.65097
[18] Barrett, J.W.; Blowey, J.F., Finite element approximation of a model for phase separation of a multi-component alloy with nonsmooth free energy, Numer. math., 77, 1-34, (1997) · Zbl 0882.65129
[19] Feng, X.; Prohl, A., Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits, Math. comput., 73, 541-567, (2004) · Zbl 1115.76049
[20] Choo, S.M.; Chung, S.K., Conservative nonlinear difference scheme for the cahn – hilliard equation, Comput. math. appl., 36, 31-39, (1998) · Zbl 0933.65098
[21] Furihata, D., A stable and conservative finite difference scheme for the cahn – hilliard equation, Numer. math., 87, 675-699, (2001) · Zbl 0974.65086
[22] Choo, S.M.; Lee, Y.J., A discontinuous Galerkin method for the cahn – hilliard equation, J. appl. math. comput., 18, 113-126, (2005) · Zbl 1078.65084
[23] Wells, G.N.; Kuhl, E.; Garikipati, K., A discontinuous Galerkin method for the cahn – hilliard equation, J. comput. phys., 218, 860-877, (2006) · Zbl 1106.65086
[24] Xia, Y.; Xu, Y.; Shu, C-W., Local discontinuous Galerkin methods for the cahn – hilliard type equations, J. comput. phys., 227, 472-491, (2007) · Zbl 1131.65088
[25] He, Y.; Liu, Y.; Tang, T., On large time-stepping methods for the cahn – hilliard equation, Appl. numer. math., 57, 616-628, (2007) · Zbl 1118.65109
[26] He, L-P., Error estimation of a class of stable spectral approximation to the cahn – hilliard equation, J. sci. comput., 41, 461-482, (2009) · Zbl 1203.65197
[27] Danumjaya, P.; Nandakumaran, A.K., Orthogonal cubic spline collocation method for the cahn – hilliard equation, Appl. math. comput., 182, 1316-1329, (2006) · Zbl 1111.65091
[28] Zheng, H.W.; Shu, C.; Chew, Y.T., A lattice Boltzmann model for multiphase flows with large density ratio, J. comput. phys., 218, 353-371, (2006) · Zbl 1158.76419
[29] Dehghan, M.; Mirzaei, D., A numerical method based on the boundary integral equation and dual reciprocity methods for one-dimensional cahn – hilliard equation, Eng. anal. bound. elem., 33, 522-528, (2009) · Zbl 1244.74149
[30] Kim, J.; Kang, K.; Lowengrub, J., Conservative multigrid methods for cahn – hilliard fluids, J. comput. phys., 193, 511-543, (2004) · Zbl 1109.76348
[31] Baňas, L.; Nürnberg, R., Adaptive finite element methods for cahn – hilliard equations, J. comput. appl. math., 218, 2-11, (2008) · Zbl 1143.65076
[32] Ceniceros, H.D.; Roma, A.M., A nonstiff adaptive mesh refinement-based method for the cahn – hilliard equation, J. comput. phys., 225, 1849-1862, (2007) · Zbl 1343.65109
[33] Karniadakis, G.E.; Sherwin, S.J., Spectral/hp element methods for CFD, (1999), Oxford University Press Oxford · Zbl 0954.76001
[34] Jiang, G., The least-square finite element method: theory and applications in computational fluid dynamics and electromagnetics, (1998), Springer
[35] Ye, X., The Fourier collocation method for the cahn – hilliard equation, Comput. math. appl., 44, 213-229, (2002) · Zbl 1034.65085
[36] Surana, K.S.; Van Dyne, D.G., Non-weak/strong solutions in gas dynamics: a C^11p-version STLSFEF in Eulerian frame of reference using ρ, u, p primite variables, Int. J. comput. eng. sci., 2, 653-673, (2002)
[37] P. Šolin, K. Segeth, Towards optimal shape functions for hierarchical Hermite elements, in: Proceedings of the SANM Conference, Srni, Czech Republic, 2005.
[38] Deville, M.O.; Fischer, P.F.; Mund, E.H., High-order methods for incompressible fluid flow, (2002), Cambridge University Press · Zbl 1007.76001
[39] Maday, Y.; Rønquist, E.M., Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries, Comput. methods appl. mech. eng., 9, 91-115, (1990) · Zbl 0728.65078
[40] B. De Maerschalck, M.I. Gerritsma, High-order Gauss-Lobatto integration for non-linear hyperbolic equations, in: Sixth International Conference on Spectral and High Order Methods, Brown University, Providence, Rhode Island, USA, June 21-25, 2005. · Zbl 1138.65088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.