×

zbMATH — the first resource for mathematics

Large-eddy simulation of large-scale structures in long channel flow. (English) Zbl 1205.76146
Summary: We investigate statistics of large-scale structures from large-eddy simulation (LES) of turbulent channel flow at friction Reynolds numbers \(Re_{\tau } = 2K\) and 200K (where K denotes 1000). In order to capture the behaviour of large-scale structures properly, the channel length is chosen to be 96 times the channel half-height. In agreement with experiments, these large-scale structures are found to give rise to an apparent amplitude modulation of the underlying small-scale fluctuations. This effect is explained in terms of the phase relationship between the large- and small-scale activity. The shape of the dominant large-scale structure is investigated by conditional averages based on the large-scale velocity, determined using a filter width equal to the channel half-height. The conditioned field demonstrates coherence on a scale of several times the filter width, and the small-scale-large-scale relative phase difference increases away from the wall, passing through \(\pi /2\) in the overlap region of the mean velocity before approaching \(\pi \) further from the wall. We also found that, near the wall, the convection velocity of the large scales departs slightly, but unequivocally, from the mean velocity.

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S002211206400132X · Zbl 0139.22102 · doi:10.1017/S002211206400132X
[2] DOI: 10.1017/S0022112009006946 · Zbl 1181.76008 · doi:10.1017/S0022112009006946
[3] DOI: 10.1103/PhysRevLett.99.114504 · doi:10.1103/PhysRevLett.99.114504
[4] DOI: 10.1063/1.869617 · doi:10.1063/1.869617
[5] DOI: 10.1017/S0022112070000629 · doi:10.1017/S0022112070000629
[6] DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889
[7] DOI: 10.1017/S0022112005004295 · Zbl 1074.76016 · doi:10.1017/S0022112005004295
[8] DOI: 10.1063/1.1762432 · doi:10.1063/1.1762432
[9] DOI: 10.1098/rsta.2006.1942 · Zbl 1152.76421 · doi:10.1098/rsta.2006.1942
[10] DOI: 10.1017/S0022112008003352 · Zbl 1155.76031 · doi:10.1017/S0022112008003352
[11] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[12] DOI: 10.1017/S0022112009006867 · Zbl 1181.76088 · doi:10.1017/S0022112009006867
[13] DOI: 10.1063/1.2162185 · doi:10.1063/1.2162185
[14] DOI: 10.2514/3.61311 · Zbl 0443.76060 · doi:10.2514/3.61311
[15] DOI: 10.1146/annurev.fl.13.010181.002325 · doi:10.1146/annurev.fl.13.010181.002325
[16] DOI: 10.1017/S0022112006008871 · Zbl 1156.76316 · doi:10.1017/S0022112006008871
[17] DOI: 10.1063/1.864901 · doi:10.1063/1.864901
[18] DOI: 10.1098/rsta.2006.1940 · Zbl 1152.76369 · doi:10.1098/rsta.2006.1940
[19] DOI: 10.1017/S002211200300733X · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[20] DOI: 10.1017/S0022112009991029 · Zbl 1183.76761 · doi:10.1017/S0022112009991029
[21] DOI: 10.1017/S0022112072000679 · doi:10.1017/S0022112072000679
[22] DOI: 10.1017/S0022112071001605 · doi:10.1017/S0022112071001605
[23] DOI: 10.1017/S0022112004008985 · Zbl 1060.76508 · doi:10.1017/S0022112004008985
[24] DOI: 10.1017/S002211200700777X · Zbl 1141.76316 · doi:10.1017/S002211200700777X
[25] DOI: 10.1017/S0022112009007423 · Zbl 1183.76036 · doi:10.1017/S0022112009007423
[26] DOI: 10.1017/S0022112009007769 · Zbl 1183.76035 · doi:10.1017/S0022112009007769
[27] DOI: 10.1063/1.869361 · Zbl 1185.76770 · doi:10.1063/1.869361
[28] DOI: 10.1063/1.3267726 · Zbl 1183.76346 · doi:10.1063/1.3267726
[29] DOI: 10.1063/1.870429 · Zbl 1184.76575 · doi:10.1063/1.870429
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.