zbMATH — the first resource for mathematics

Assessment of direct numerical simulation data of turbulent boundary layers. (English) Zbl 1205.76139
Summary: Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers \(Re_{\theta } = 500-4300\). Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient \(c_{f}\) or the shape factor \(H_{12}\), but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy.

76F40 Turbulent boundary layers
76F65 Direct numerical and large eddy simulation of turbulence
Full Text: DOI
[1] DOI: 10.1017/S0022112004001788 · Zbl 1068.76040 · doi:10.1017/S0022112004001788
[2] Schlatter, Bull. Am. Phys. Soc. 54 pp 59– (2009)
[3] DOI: 10.1006/jcph.1998.5882 · Zbl 0936.76026 · doi:10.1006/jcph.1998.5882
[4] DOI: 10.1023/A:1020404706293 · Zbl 1113.76379 · doi:10.1023/A:1020404706293
[5] Khujadze, Proceedingsof the Fifth International Symposium on Turbulence and Shear Flow Phenomena pp 443– (2007)
[6] DOI: 10.1017/S0022112005006440 · Zbl 1080.76060 · doi:10.1017/S0022112005006440
[7] DOI: 10.1007/s00162-004-0149-x · Zbl 1148.76320 · doi:10.1007/s00162-004-0149-x
[8] DOI: 10.1016/0376-0421(95)00007-0 · doi:10.1016/0376-0421(95)00007-0
[9] DOI: 10.1016/S0142-727X(99)00014-4 · doi:10.1016/S0142-727X(99)00014-4
[10] DOI: 10.1017/S0022112091000691 · doi:10.1017/S0022112091000691
[11] DOI: 10.1098/rspa.1995.0125 · Zbl 0862.76059 · doi:10.1098/rspa.1995.0125
[12] DOI: 10.1088/0169-5983/41/2/021404 · Zbl 1286.76007 · doi:10.1088/0169-5983/41/2/021404
[13] DOI: 10.1016/S0142-727X(02)00164-9 · doi:10.1016/S0142-727X(02)00164-9
[14] DOI: 10.1016/j.ijheatfluidflow.2009.06.004 · doi:10.1016/j.ijheatfluidflow.2009.06.004
[15] DOI: 10.1063/1.2162185 · doi:10.1063/1.2162185
[16] DOI: 10.1063/1.866783 · doi:10.1063/1.866783
[17] DOI: 10.1017/S002211200300733X · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[18] DOI: 10.1063/1.1570830 · Zbl 1186.76136 · doi:10.1063/1.1570830
[19] DOI: 10.1016/j.ijheatfluidflow.2004.02.010 · doi:10.1016/j.ijheatfluidflow.2004.02.010
[20] DOI: 10.1017/S0022112009006624 · Zbl 1181.76084 · doi:10.1017/S0022112009006624
[21] Tsukahara, Proceedings of the Fourth International Symposium on Turbulence and Shear Flow Phenomena pp 935– (2005)
[22] DOI: 10.1017/S0022112088000345 · Zbl 0641.76050 · doi:10.1017/S0022112088000345
[23] Smits, J. Ship Res. 27 pp 147– (1983)
[24] DOI: 10.1016/j.jcp.2009.02.031 · Zbl 1273.76009 · doi:10.1016/j.jcp.2009.02.031
[25] DOI: 10.1016/j.ijheatfluidflow.2009.12.011 · doi:10.1016/j.ijheatfluidflow.2009.12.011
[26] DOI: 10.1063/1.3139294 · Zbl 1183.76457 · doi:10.1063/1.3139294
[27] DOI: 10.1063/1.2972935 · Zbl 1182.76530 · doi:10.1063/1.2972935
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.