×

zbMATH — the first resource for mathematics

A critical-layer framework for turbulent pipe flow. (English) Zbl 1205.76138
Summary: A model-based description of the scaling and radial location of turbulent fluctuations in turbulent pipe flow is presented and used to illuminate the scaling behaviour of the very large scale motions. The model is derived by treating the nonlinearity in the perturbation equation (involving the Reynolds stress) as an unknown forcing, yielding a linear relationship between the velocity field response and this nonlinearity. We do not assume small perturbations. We examine propagating helical velocity response modes that are harmonic in the wall-parallel directions and in time, permitting comparison of our results to experimental data. The steady component of the velocity field that varies only in the wall-normal direction is identified as the turbulent mean profile. A singular value decomposition of the resolvent identifies the forcing shape that will lead to the largest velocity response at a given wavenumber-frequency combination. The hypothesis that these forcing shapes lead to response modes that will be dominant in turbulent pipe flow is tested by using physical arguments to constrain the range of wavenumbers and frequencies to those actually observed in experiments. An investigation of the most amplified velocity response at a given wavenumber-frequency combination reveals critical-layer-like behaviour reminiscent of the neutrally stable solutions of the Orr-Sommerfeld equation in linearly unstable flow. Two distinct regions in the flow where the influence of viscosity becomes important can be identified, namely wall layers that scale with \(R^{+1/2}\) and critical layers where the propagation velocity is equal to the local mean velocity, one of which scales with \(R^{+2/3}\) in pipe flow. This framework appears to be consistent with several scaling results in wall turbulence and reveals a mechanism by which the effects of viscosity can extend well beyond the immediate vicinity of the wall. The model reproduces inner scaling of the small scales near the wall and an approach to outer scaling in the flow interior. We use our analysis to make a first prediction that the appropriate scaling velocity for the very large scale motions is the centreline velocity, and show that this is in agreement with experimental results. Lastly, we interpret the wall modes as the motion required to meet the wall boundary condition, identifying the interaction between the critical and wall modes as a potential origin for an interaction between the large and small scales that has been observed in recent literature as an amplitude modulation of the near-wall turbulence by the very large scales.

MSC:
76F40 Turbulent boundary layers
Software:
Eigtool
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112071001290 · doi:10.1017/S0022112071001290
[2] DOI: 10.1017/S0022112007005435 · Zbl 1113.76006 · doi:10.1017/S0022112007005435
[3] DOI: 10.1017/S002211200700777X · Zbl 1141.76316 · doi:10.1017/S002211200700777X
[4] DOI: 10.1017/S0022112009007423 · Zbl 1183.76036 · doi:10.1017/S0022112009007423
[5] DOI: 10.1098/rsta.2006.1946 · Zbl 1152.76410 · doi:10.1098/rsta.2006.1946
[6] DOI: 10.1063/1.1344894 · Zbl 1184.76364 · doi:10.1063/1.1344894
[7] DOI: 10.1016/S0021-9991(03)00029-9 · Zbl 1047.76565 · doi:10.1016/S0021-9991(03)00029-9
[8] DOI: 10.1017/S0022112005005501 · Zbl 1108.76315 · doi:10.1017/S0022112005005501
[9] DOI: 10.1098/rsta.2006.1945 · Zbl 1152.76409 · doi:10.1098/rsta.2006.1945
[10] DOI: 10.1017/S0022112003007304 · Zbl 1067.76513 · doi:10.1017/S0022112003007304
[11] DOI: 10.1017/S0022112009006946 · Zbl 1181.76008 · doi:10.1017/S0022112009006946
[12] DOI: 10.1146/annurev.fl.18.010186.002201 · doi:10.1146/annurev.fl.18.010186.002201
[13] Maslowe, Hydrodynamic Instabilities and the Transition to Turbulence pp 181– (1981) · Zbl 0459.76035
[14] DOI: 10.1103/PhysRevLett.99.114504 · doi:10.1103/PhysRevLett.99.114504
[15] DOI: 10.1017/S0022112081003108 · doi:10.1017/S0022112081003108
[16] Krogstad, J. Fluid Mech. 10 pp 949– (1998)
[17] DOI: 10.1017/S0022112070000629 · doi:10.1017/S0022112070000629
[18] DOI: 10.1098/rsta.2006.1944 · Zbl 1152.76407 · doi:10.1098/rsta.2006.1944
[19] DOI: 10.1063/1.870437 · Zbl 1184.76284 · doi:10.1063/1.870437
[20] DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889
[21] DOI: 10.1017/S0022112005004295 · Zbl 1074.76016 · doi:10.1017/S0022112005004295
[22] Jovanovic, Proceedings of the 2004 American Control Conference (2004)
[23] DOI: 10.1017/S0022112004008389 · Zbl 1065.76552 · doi:10.1017/S0022112004008389
[24] DOI: 10.1098/rsta.2006.1942 · Zbl 1152.76421 · doi:10.1098/rsta.2006.1942
[25] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[26] DOI: 10.1063/1.868251 · Zbl 0826.76035 · doi:10.1063/1.868251
[27] DOI: 10.1017/S0022112006008871 · Zbl 1156.76316 · doi:10.1017/S0022112006008871
[28] DOI: 10.1007/s001620050091 · Zbl 0926.76057 · doi:10.1007/s001620050091
[29] DOI: 10.1063/1.858894 · Zbl 0809.76078 · doi:10.1063/1.858894
[30] DOI: 10.1017/S0022112006004526 · Zbl 1178.76058 · doi:10.1017/S0022112006004526
[31] Duggleby, J. Turbul. 8 pp 1– (2007)
[32] Zagarola, J. Fluid Mech. 373 pp 33– (1998)
[33] Drazin, Hydrodynamic Stability (2004)
[34] Young, An Introduction to Hilbert Space (1988) · doi:10.1017/CBO9781139172011
[35] Dennis, J. Fluid Mech. 614 pp 197– (2008)
[36] Wu, J. Fluid Mech. 608 pp 81– (2008)
[37] DeGraaff, J. Fluid Mech. 422 pp 319– (2000)
[38] Dean, J. Fluid Mech. 78 pp 641– (1976)
[39] Wedin, J. Fluid Mech. 508 pp 333– (2004)
[40] Wang, Phys. Rev. Lett. 98 (2007)
[41] Waleffe, Phys. Fluids 15 pp 1517– (2003)
[42] Waleffe, J. Fluid Mech. 435 pp 93– (2001)
[43] Waleffe, Phys. Fluids 9 pp 883– (1997)
[44] Curtain, An Introduction to Infinite-Dimensional Linear Systems Theory (1995) · Zbl 0839.93001 · doi:10.1007/978-1-4612-4224-6
[45] Cossu, J. Fluid Mech. 619 pp 79– (2009)
[46] Butler, Phys. Fluids 4 (1992) · doi:10.1063/1.858386
[47] Butler, Phys. Fluids A5 pp 774– (1992)
[48] Viswanath, Phil. Trans. R. Soc. A 367 pp 561– (2009)
[49] Boberg, Z. Naturforsch. 43a pp 697– (1988)
[50] Trefethen, Science 261 pp 578– (1993)
[51] Blondel, Unsolved Problems in Mathematical Systems and Control Theory (2004) · Zbl 1052.93002
[52] Trefethen, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (2005) · Zbl 1085.15009
[53] Blackwelder, J. Fluid Mech. 15 pp 1545– (1972)
[54] Townsend, The Structure of Turbulent Shear Flow (1976) · Zbl 0325.76063
[55] Bandyopadhyay, Phys. Fluids 27 pp 2221– (1984)
[56] Sreenivasan, Self-Sustaining Mechanisms of Wall Turbulence pp 253– (1997)
[57] Sreenivasan, IUTAM Symposium on One Hundred Years of Boundary Layer Research pp 241– (2006)
[58] Sreenivasan, Turbulence Management and Relaminarisation; Proceedings of the IUTAM Symposium, Bangalore, India, January 13–23, 1987 (A89-10154 01-34) pp 37– (1988)
[59] Sirovich, Phys. Fluids A 2 pp 2217– (1990)
[60] Shockling, J. Fluid Mech. 564 pp 267– (2006)
[61] DOI: 10.1017/S002211200100667X · Zbl 1141.76408 · doi:10.1017/S002211200100667X
[62] Schmid, Stability and Transition in Shear Flows (2001) · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[63] DOI: 10.1063/1.870174 · Zbl 1149.76527 · doi:10.1063/1.870174
[64] DOI: 10.1017/S0022112067000308 · doi:10.1017/S0022112067000308
[65] DOI: 10.1017/S0022112072000679 · doi:10.1017/S0022112072000679
[66] DOI: 10.1137/0153002 · Zbl 0778.34060 · doi:10.1137/0153002
[67] DOI: 10.1063/1.3006423 · Zbl 1182.76550 · doi:10.1063/1.3006423
[68] DOI: 10.1017/S0022112069002072 · doi:10.1017/S0022112069002072
[69] DOI: 10.1017/S0022112004008985 · Zbl 1060.76508 · doi:10.1017/S0022112004008985
[70] DOI: 10.1063/1.1398044 · Zbl 1184.76042 · doi:10.1063/1.1398044
[71] DOI: 10.1098/rsta.2006.1940 · Zbl 1152.76369 · doi:10.1098/rsta.2006.1940
[72] DOI: 10.1017/S0022112008003492 · Zbl 1175.76003 · doi:10.1017/S0022112008003492
[73] DOI: 10.1017/S0022112088001818 · Zbl 0643.76066 · doi:10.1017/S0022112088001818
[74] DOI: 10.1017/S002211200300733X · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[75] DOI: 10.1017/S0022112006000607 · Zbl 1095.76021 · doi:10.1017/S0022112006000607
[76] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[77] DOI: 10.1063/1.2717527 · Zbl 1146.76307 · doi:10.1063/1.2717527
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.