×

zbMATH — the first resource for mathematics

Effect of compressibility on the global stability of axisymmetric wake flows. (English) Zbl 1205.76112
Summary: We study the linear dynamics of global eigenmodes in compressible axisymmetric wake flows, up to the high subsonic regime. We consider both an afterbody flow at zero angle of attack and a sphere, and find that the sequence of bifurcations destabilizing the axisymmetric steady flow is independent of the Mach number and reminiscent of that documented in the incompressible wake past a sphere and a disk (Natarajan & Acrivos, J. Fluid Mech., vol. 254, 1993, p. 323), hence suggesting that the onset of unsteadiness in this class of flows results from a global instability. We determine the boundary separating the stable and unstable domains in the (M, Re) plane, and show that an increase in the Mach number yields a stabilization of the afterbody flow, but a destabilization of the sphere flow. These compressible effects are further investigated by means of adjoint-based sensitivity analyses relying on the computation of gradients or sensitivity functions. Using this theoretical formalism, we show that they do not act through specific compressibility effects at the disturbance level but mainly through implicit base flow modifications, an effect that had not been taken into consideration by previous studies based on prescribed parallel base flow profiles. We propose a physical interpretation for the observed compressible effects, based on the competition between advection and production of disturbances, and provide evidence linking the stabilizing/destabilizing effect observed when varying the Mach number to a strengthening/weakening of the disturbance advection mechanism. We show, in particular, that the destabilizing effect of compressibility observed in the case of the sphere results from a significant increase of the backflow velocity in the whole recirculating bubble, which opposes the downstream advection of disturbances.

MSC:
76E09 Stability and instability of nonparallel flows in hydrodynamic stability
76N15 Gas dynamics (general theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.870287 · Zbl 1149.76349
[2] DOI: 10.1017/S0022112093002150 · Zbl 0780.76027
[3] DOI: 10.1146/annurev.fluid.36.050802.121930 · Zbl 1076.76040
[4] DOI: 10.1017/S0022112008000499 · Zbl 1151.76472
[5] DOI: 10.1146/annurev.fluid.37.061903.175810 · Zbl 1117.76027
[6] Brès, J. Fluid Mech. 599 pp 309– (2008)
[7] DOI: 10.1016/j.jfluidstructs.2009.04.004
[8] DOI: 10.1016/S0045-7930(02)00100-7 · Zbl 1039.76517
[9] DOI: 10.1017/S0022112009007290 · Zbl 1183.76721
[10] DOI: 10.1017/S002211200200318X · Zbl 1041.76029
[11] Matsumoto, J. Appl. Mech. 3 pp 263– (2000)
[12] DOI: 10.1017/S002211200200232X · Zbl 1026.76019
[13] DOI: 10.1017/S0022112008003662 · Zbl 1165.76012
[14] DOI: 10.1017/S0022112074000644
[15] DOI: 10.1017/S0022112008004023 · Zbl 1165.76337
[16] DOI: 10.1017/S0022112072000874
[17] Mair, Aeronaut. Q. 16 pp 350– (1965)
[18] DOI: 10.1017/S0022112008002851 · Zbl 1151.76469
[19] DOI: 10.1017/S0022112098008970 · Zbl 0926.76038
[20] Lesshafft, Phys. Fluids 19 (2007)
[21] DOI: 10.1017/S0022112098003206
[22] DOI: 10.1063/1.868126 · Zbl 0835.76030
[23] DOI: 10.1063/1.857655 · Zbl 0712.76045
[24] DOI: 10.1017/S0022112087002234 · Zbl 0639.76041
[25] DOI: 10.1016/S0997-7546(00)00112-6 · Zbl 0961.76502
[26] DOI: 10.1017/S0022112006000140 · Zbl 1122.76033
[27] DOI: 10.1017/S0022112000008880 · Zbl 1156.76419
[28] DOI: 10.1002/(SICI)1097-0363(19990915)31:1<53::AID-FLD955>3.0.CO;2-Z · Zbl 0962.76030
[29] DOI: 10.1017/S0022112078000580
[30] DOI: 10.1017/S0022112007005654 · Zbl 1115.76028
[31] DOI: 10.1063/1.868451 · Zbl 1032.76547
[32] Giannetti, Proceedings of 5th European Fluid Mechanics Conference (2003)
[33] DOI: 10.1017/S0022112079001841
[34] DOI: 10.1063/1.2909609 · Zbl 1182.76238
[35] DOI: 10.1063/1.1773071 · Zbl 1187.76476
[36] DOI: 10.1017/S0022112005005112 · Zbl 1073.76027
[37] DOI: 10.2514/1.7000
[38] Schmid, Stability and Transition in Shear Flows (2001) · Zbl 0966.76003
[39] DOI: 10.1137/S0895479894246905 · Zbl 0884.65021
[40] Schlichting, Boundary Layer Theory (1978) · Zbl 0096.20105
[41] DOI: 10.1145/992200.992205 · Zbl 1072.65036
[42] DOI: 10.1017/S0022112007005095 · Zbl 1175.76065
[43] DOI: 10.1017/S0022112009006673 · Zbl 1181.76092
[44] DOI: 10.1063/1.857496
[45] DOI: 10.1016/j.jcp.2006.10.035 · Zbl 1123.76018
[46] DOI: 10.1103/PhysRevLett.83.80
[47] DOI: 10.2514/3.9990
[48] DOI: 10.1007/s001620100043 · Zbl 0999.76047
[49] DOI: 10.1017/S0022112007005903 · Zbl 1115.76029
[50] DOI: 10.2514/3.60954
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.