×

zbMATH — the first resource for mathematics

Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. (English) Zbl 1205.76085
Summary: The relationship between asymptotic descriptions of vortex-wave interactions and more recent work on ‘exact coherent structures’ is investigated. In recent years immense interest has been focused on so-called self-sustained processes in turbulent shear flows where the importance of waves interacting with streamwise vortex flows has been elucidated in a number of papers. In this paper, it is shown that the so-called ‘lower branch’ state which has been shown to play a crucial role in these self-sustained processes is a finite Reynolds number analogue of a Rayleigh vortex-wave interaction with scales appropriately modified from those for external flows to Couette flow, the flow of interest here. Remarkable agreement between the asymptotic theory and numerical solutions of the Navier-Stokes equations is found even down to relatively small Reynolds numbers, thereby suggesting the possible importance of vortex-wave interaction theory in turbulent shear flows. The relevance of the work to more general shear flows is also discussed.

MSC:
76D17 Viscous vortex flows
76E30 Nonlinear effects in hydrodynamic stability
76F06 Transition to turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1126/science.1100393 · doi:10.1126/science.1100393
[2] DOI: 10.1016/0021-9991(91)90007-8 · Zbl 0738.76050 · doi:10.1016/0021-9991(91)90007-8
[3] Hall, Near Planar TS Waves and Longitudinal Vortices in Channel Flow: Nonlinear Interaction and Focussing pp 5– (1990)
[4] Hall, Eur. J. Mech. B/Fluids 8 pp 179– (1989)
[5] DOI: 10.1098/rspa.1988.0060 · Zbl 0657.76047 · doi:10.1098/rspa.1988.0060
[6] DOI: 10.1017/S0022112092000508 · Zbl 0788.76035 · doi:10.1017/S0022112092000508
[7] DOI: 10.1017/S0022112091003725 · Zbl 0738.76029 · doi:10.1017/S0022112091003725
[8] DOI: 10.1112/S002557930000718X · Zbl 0799.76017 · doi:10.1112/S002557930000718X
[9] DOI: 10.1137/S0036142901395400 · Zbl 1130.76395 · doi:10.1137/S0036142901395400
[10] DOI: 10.1063/1.857913 · Zbl 0825.76255 · doi:10.1063/1.857913
[11] DOI: 10.1063/1.1688059 · doi:10.1063/1.1688059
[12] DOI: 10.1017/S0022112004009346 · Zbl 1065.76072 · doi:10.1017/S0022112004009346
[13] DOI: 10.1103/PhysRevLett.91.224502 · doi:10.1103/PhysRevLett.91.224502
[14] DOI: 10.1103/PhysRevLett.98.204501 · doi:10.1103/PhysRevLett.98.204501
[15] DOI: 10.1017/S0022112068000029 · Zbl 0193.56502 · doi:10.1017/S0022112068000029
[16] DOI: 10.1017/S0022112092003252 · Zbl 0772.76020 · doi:10.1017/S0022112092003252
[17] DOI: 10.1017/S0022112097005818 · Zbl 0898.76028 · doi:10.1017/S0022112097005818
[18] DOI: 10.1063/1.1566753 · Zbl 1186.76556 · doi:10.1063/1.1566753
[19] DOI: 10.1103/PhysRevLett.81.4140 · doi:10.1103/PhysRevLett.81.4140
[20] DOI: 10.1063/1.869185 · doi:10.1063/1.869185
[21] DOI: 10.1017/S0022112001006255 · Zbl 1037.76023 · doi:10.1017/S0022112001006255
[22] Waleffe, Stud. Appl. Math. 95 pp 319– (1995) · Zbl 0838.76026 · doi:10.1002/sapm1995953319
[23] DOI: 10.1112/S0025579300013693 · Zbl 0781.76024 · doi:10.1112/S0025579300013693
[24] Blackaby, Phil. Trans. Soc. 352 pp 1700– (1994)
[25] DOI: 10.1017/S0022112007005459 · Zbl 1175.76074 · doi:10.1017/S0022112007005459
[26] Tuckerman, Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems pp 453– (2000) · doi:10.1007/978-1-4612-1208-9_20
[27] Benney, Stud. Appl. Math. 70 pp 1– (1984) · Zbl 0566.76046 · doi:10.1002/sapm19847011
[28] DOI: 10.1017/S0022112097006447 · Zbl 0920.76032 · doi:10.1017/S0022112097006447
[29] DOI: 10.1017/S0022112001004189 · Zbl 0987.76034 · doi:10.1017/S0022112001004189
[30] DOI: 10.1017/S0022112091001507 · Zbl 0717.76052 · doi:10.1017/S0022112091001507
[31] DOI: 10.1098/rsta.1923.0008 · doi:10.1098/rsta.1923.0008
[32] Bassom, Stud. Appl. Math. 81 pp 185– (1989) · Zbl 0682.76035 · doi:10.1002/sapm1989813185
[33] DOI: 10.1017/S0022112087002337 · doi:10.1017/S0022112087002337
[34] DOI: 10.1002/fld.1824 · Zbl 1144.76044 · doi:10.1002/fld.1824
[35] DOI: 10.1017/S0022112066000910 · Zbl 0139.21704 · doi:10.1017/S0022112066000910
[36] DOI: 10.1016/S0045-7825(98)00356-9 · Zbl 0934.76040 · doi:10.1016/S0045-7825(98)00356-9
[37] DOI: 10.1093/imamat/3.4.419 · Zbl 0155.55202 · doi:10.1093/imamat/3.4.419
[38] DOI: 10.1017/S0022112090000829 · doi:10.1017/S0022112090000829
[39] DOI: 10.1017/S0022112095003016 · Zbl 0865.76024 · doi:10.1017/S0022112095003016
[40] DOI: 10.1016/S0045-7825(96)01207-8 · Zbl 0891.76053 · doi:10.1016/S0045-7825(96)01207-8
[41] DOI: 10.1017/S0022112007006301 · Zbl 1123.76022 · doi:10.1017/S0022112007006301
[42] DOI: 10.1093/acprof:oso/9780198528692.001.0001 · Zbl 1116.76002 · doi:10.1093/acprof:oso/9780198528692.001.0001
[43] DOI: 10.1017/S0022112091000289 · Zbl 0721.76027 · doi:10.1017/S0022112091000289
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.