×

zbMATH — the first resource for mathematics

Sloshing and slamming oscillations in a collapsible channel flow. (English) Zbl 1205.76077
Summary: We consider laminar high-Reynolds-number flow through a finite-length planar channel, where a portion of one wall is replaced by a thin massless elastic membrane that is held under longitudinal tension \(T\) and subject to a linear external pressure distribution. The flow is driven by a fixed pressure drop along the full length of the channel. We investigate the global stability of two-dimensional Poiseuille flow using a method of matched local eigenfunction expansions, which is compared to direct numerical simulations. We trace the neutral stability curve of the primary oscillatory instability of the system, illustrating a transition from high-frequency ‘sloshing’ oscillations at high \(T\) to vigorous ‘slamming’ motion at low \(T\). Small-amplitude sloshing at high \(T\) can be captured using a low-order eigenmode truncation involving four surface-based modes in the compliant segment of the channel coupled to Womersley flow in the rigid segments. At lower tensions, we show that hydrodynamic modes increasingly contribute to the global instability, and we demonstrate a change in the mechanism of energy transfer from the mean flow, with viscous effects being destabilizing. Simulations of finite-amplitude oscillations at low \(T\) reveal a generic slamming motion, in which the flexible membrane is drawn close to the opposite rigid wall before recovering rapidly. A simple model is used to demonstrate how fluid inertia in the downstream rigid channel segment, coupled to membrane curvature downstream of the moving constriction, together control slamming dynamics.

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Software:
oomph-lib
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.euromechflu.2009.03.002 · Zbl 1167.76329
[2] DOI: 10.1017/S0022112010000157 · Zbl 1193.74034
[3] DOI: 10.1017/S0022112085001902 · Zbl 0596.76053
[4] DOI: 10.1038/305692a0
[5] DOI: 10.1016/0021-9991(84)90032-9 · Zbl 0543.65063
[6] DOI: 10.1017/S0022112008005545 · Zbl 1171.76355
[7] DOI: 10.1115/1.2798016
[8] DOI: 10.1017/S0022112006002655 · Zbl 1177.76083
[9] Xia, JSME Intl J. Ser. C Mech. Syst. Mach. Elem. Manuf. 43 pp 882– (2000)
[10] DOI: 10.1098/rspa.2007.1869 · Zbl 1129.76020
[11] Womersley, J. Physiol. 127 pp 553– (1955)
[12] DOI: 10.1146/annurev.fluid.36.050802.121918 · Zbl 1081.76063
[13] DOI: 10.1017/S0022112009992904 · Zbl 1189.76133
[14] DOI: 10.1242/jeb.026872
[15] Whittaker, Q. J. Mech. Appl. Maths (2010)
[16] DOI: 10.1063/1.866320
[17] Whittaker, Proc. R. Soc. Lond. A (2010)
[18] DOI: 10.1152/physrev.00043.2008
[19] DOI: 10.1017/S0022112009992916 · Zbl 1189.76132
[20] DOI: 10.1017/S0022112097007313 · Zbl 0903.76029
[21] DOI: 10.1002/cnm.1238 · Zbl 1419.76017
[22] DOI: 10.1017/S002211208600085X · Zbl 0634.76045
[23] DOI: 10.1121/1.2000787
[24] DOI: 10.1063/1.3337824 · Zbl 1188.76152
[25] DOI: 10.1017/S0022112061000160 · Zbl 0096.20702
[26] DOI: 10.1093/qjmam/36.2.271 · Zbl 0542.76053
[27] Schmid, Stability and Transition in Shear Flows (2001) · Zbl 0966.76003
[28] Bertram, J. Fluids Struct. 8 pp 637– (1994)
[29] Peyret, Spectral Methods for Incompressible Viscous Flow (2002) · Zbl 1005.76001
[30] DOI: 10.1016/0889-9746(90)90058-D
[31] DOI: 10.1017/S0022112085003512
[32] DOI: 10.1016/0021-9290(82)90033-1
[33] DOI: 10.1007/s001620050064 · Zbl 0931.74024
[34] DOI: 10.1016/j.resp.2008.04.011
[35] DOI: 10.1017/S0022112057000567 · Zbl 0078.40705
[36] DOI: 10.1007/BF02459476 · Zbl 0859.92005
[37] DOI: 10.1007/s10697-005-0004-9 · Zbl 1184.76659
[38] DOI: 10.1098/rspa.2009.0328 · Zbl 1195.76450
[39] DOI: 10.1017/S0022112096000286 · Zbl 0875.76264
[40] DOI: 10.1017/S0022112008000293 · Zbl 1151.76455
[41] DOI: 10.1002/cnm.1217 · Zbl 1419.74111
[42] Landau, Acta Physicochim. URSS 17 pp 42– (1942)
[43] Knowlton, J. Physiol. Lond. 44 pp 206– (1912)
[44] DOI: 10.1017/S002211200300394X · Zbl 1049.76015
[45] DOI: 10.1017/S0022112008000463 · Zbl 1151.76418
[46] Heil, Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries (2003)
[47] DOI: 10.1007/3-540-34596-5_2 · Zbl 1323.74085
[48] DOI: 10.1007/978-90-481-3723-7_64
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.