×

zbMATH — the first resource for mathematics

Constructive and destructive interaction modes between two tandem flexible flags in viscous flow. (English) Zbl 1205.76076
Summary: Two tandem flexible flags in viscous flow were modelled by numerical simulation using an improved version of the immersed boundary method. The flexible flapping flag and the vortices produced by an upstream flag were found to interact via either a constructive or destructive mode. These interaction modes gave rise to significant differences in the drag force acting on the downstream flapping flag in viscous flow. The constructive mode increased the drag force, while the destructive mode decreased the drag force. Drag on the downstream flexible body was investigated as a function of the streamwise and spanwise gap distances, and the bending coefficient of the flexible flags at intermediate Reynolds numbers \((200 \leqslant Re \leqslant 400)\).

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevLett.101.194502 · doi:10.1103/PhysRevLett.101.194502
[2] DOI: 10.1063/1.3204672 · Zbl 1183.76460 · doi:10.1063/1.3204672
[3] DOI: 10.1126/science.1092367 · doi:10.1126/science.1092367
[4] DOI: 10.1016/j.jfluidstructs.2009.06.002 · doi:10.1016/j.jfluidstructs.2009.06.002
[5] DOI: 10.1002/fld.205 · Zbl 1059.76046 · doi:10.1002/fld.205
[6] DOI: 10.1146/annurev.fluid.38.050304.092201 · Zbl 1097.76020 · doi:10.1146/annurev.fluid.38.050304.092201
[7] DOI: 10.1103/PhysRevLett.100.228104 · doi:10.1103/PhysRevLett.100.228104
[8] Fish, Comments Theor. Biol. 5 pp 283– (1999)
[9] DOI: 10.1017/S0022112007005563 · Zbl 1176.76044 · doi:10.1017/S0022112007005563
[10] DOI: 10.1016/j.jfluidstructs.2003.10.001 · doi:10.1016/j.jfluidstructs.2003.10.001
[11] DOI: 10.1016/j.jcp.2007.07.002 · Zbl 1388.74037 · doi:10.1016/j.jcp.2007.07.002
[12] DOI: 10.1017/S002211200800284X · Zbl 1151.74347 · doi:10.1017/S002211200800284X
[13] DOI: 10.1017/S0022112094002016 · doi:10.1017/S0022112094002016
[14] Eldredge, J. Fluid Mech. 611 pp 97– (2008)
[15] DOI: 10.1006/jcph.1993.1081 · Zbl 0768.76049 · doi:10.1006/jcph.1993.1081
[16] DOI: 10.1063/1.2814259 · Zbl 1182.76198 · doi:10.1063/1.2814259
[17] DOI: 10.1017/S0022112007005307 · Zbl 1124.76011 · doi:10.1017/S0022112007005307
[18] DOI: 10.1017/S0022112009992138 · Zbl 1183.76653 · doi:10.1017/S0022112009992138
[19] DOI: 10.1103/PhysRevLett.100.074301 · doi:10.1103/PhysRevLett.100.074301
[20] DOI: 10.1006/jcph.2002.7066 · Zbl 1130.76406 · doi:10.1006/jcph.2002.7066
[21] DOI: 10.1038/35048530 · doi:10.1038/35048530
[22] DOI: 10.1016/S0022-460X(85)80068-7 · doi:10.1016/S0022-460X(85)80068-7
[23] DOI: 10.1017/S0022112009007903 · Zbl 1183.76709 · doi:10.1017/S0022112009007903
[24] DOI: 10.2514/3.13396 · Zbl 0900.76071 · doi:10.2514/3.13396
[25] DOI: 10.1002/fld.1706 · Zbl 1391.76576 · doi:10.1002/fld.1706
[26] DOI: 10.1017/CBO9780511550140.007 · doi:10.1017/CBO9780511550140.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.