×

zbMATH — the first resource for mathematics

Turbulence measurements using a nanoscale thermal anemometry probe. (English) Zbl 1205.76005
Summary: A nanoscale thermal anemometry probe (NSTAP) has been developed to measure velocity fluctuations at ultra-small scales. The sensing element is a free-standing platinum nanoscale wire, 100 nm \(\times 2 \mu \)m \(\times 60 \mu \)m, suspended between two current-carrying contacts and the sensor is an order of magnitude smaller than presently available commercial hot wires. The probe is constructed using standard semiconductor and MEMS manufacturing methods, which enables many probes to be manufactured simultaneously. Measurements were performed in grid-generated turbulence and compared to conventional hot-wire probes with a range of sensor lengths. The results demonstrate that the NSTAP behaves similarly to conventional hot-wire probes but with better spatial resolution and faster temporal response. The results are used to investigate spatial filtering effects, including the impact of spatial filtering on the probability density of velocity and velocity increment statistics.

MSC:
76-05 Experimental work for problems pertaining to fluid mechanics
76F99 Turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112098002419 · Zbl 0941.76510
[2] DOI: 10.1017/S0022112090002889
[3] DOI: 10.1007/BF00264405
[4] DOI: 10.1088/0957-0233/15/5/003
[5] DOI: 10.1088/0957-0233/17/10/019
[6] DOI: 10.1088/0957-0233/15/9/022
[7] Fingerson, Fluid Mechanics Measurements pp 99– (1983)
[8] DOI: 10.1016/0894-1777(95)00001-3
[9] Jiang, International Electron Devices Meeting, San Francisco, CA pp 139– (1994)
[10] Comte-Bellot, Springer Handbook of Experimental Fluid Mechanics pp 229– (2007)
[11] DOI: 10.1017/S0022112009007721 · Zbl 1183.76025
[12] DOI: 10.1007/s003480050105
[13] Ho, Bull. Am. Phys. Soc. 38 pp 2234– (1993)
[14] DOI: 10.1088/0957-0233/20/11/115401
[15] DOI: 10.1201/9781420050905
[16] DOI: 10.1061/(ASCE)0893-1321(2003)16:2(85)
[17] Bruun, Hot-Wire Anemometry (1995)
[18] Avilov, Pis’ma Zh. Eksp. Teor Fiz. 59 pp 851– (1994)
[19] DOI: 10.1088/0022-3735/17/1/012
[20] DOI: 10.1088/0022-3735/1/11/310
[21] DOI: 10.1017/S0022112084001026
[22] Tavoularis, Measurement in Fluid Mechanics (2005)
[23] Tai, Bull. Am. Phys. Soc. 38 pp 22– (1993)
[24] DOI: 10.1017/S0022112079002329
[25] DOI: 10.1017/S0022112004008985 · Zbl 1060.76508
[26] DOI: 10.1088/0957-0233/14/3/302
[27] Löfdahl, Exp. Fluids 12 pp 391– (1992)
[28] DOI: 10.1088/0022-3735/22/6/013
[29] DOI: 10.1088/0022-3735/20/3/019
[30] DOI: 10.1017/S0022112010001497 · Zbl 1193.76015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.