×

A gravitational approach to edge detection based on triangular norms. (English) Zbl 1205.68345

Summary: We study the method of G. Sun et al. [ibid. 40, No. 10, 2766–2775 (2007; Zbl 1132.68806)] for edge detection based on the Law of Universal Gravity. We analyze the effect of the substitution of the product operation by other triangular norms in the calculation of the gravitational forces. We treat edges as fuzzy sets for which membership degrees are extracted from the resulting gravitational force on each pixel. We consider several prototypical triangular norms and experimentally show that their features determine the kind of edges detected. The new method is tested on the Berkeley Segmentation Dataset, showing to be competitive compared to the Canny method.

MSC:

68T10 Pattern recognition, speech recognition
68U10 Computing methodologies for image processing

Citations:

Zbl 1132.68806

Software:

GSA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bezdek, J.; Chandrasekhar, R.; Attikouzel, Y., A geometric approach to edge detection, IEEE Transactions on Fuzzy Systems, 6, 1, 52-75 (1998)
[2] I. Sobel, G. Feldman, A 3×3 isotropic gradient operator for image processing, Presented at a talk at the Stanford Artificial Project, 1968.; I. Sobel, G. Feldman, A 3×3 isotropic gradient operator for image processing, Presented at a talk at the Stanford Artificial Project, 1968.
[3] Prewitt, J. M.S., Object Enhancement and Extraction Picture Processing and Psychopictorics (1970), Academic Press, pp. 75-149
[4] Marr, D.; Hildreth, E., Theory of edge detection, Proceedings of the Royal Society of London, 207, 1167, 187-217 (1980)
[5] J. Canny, Finding edges and lines in images, Technical Report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1983.; J. Canny, Finding edges and lines in images, Technical Report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1983.
[6] Canny, J., A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 6, 679-698 (1986)
[7] Basu, M., Gaussian-based edge-detection methods—a survey, IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 32, 3, 252-260 (2002)
[8] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 7, 629-639 (1990)
[9] Ducottet, C.; Fournel, T.; Barat, C., Scale-adaptive detection and local characterization of edges based on wavelet transform, Signal Processing, 84, 11, 2115-2137 (2004) · Zbl 1148.94310
[10] Yi, S.; Labate, D.; Easley, G.; Krim, H., A shearlet approach to edge analysis and detection, IEEE Transactions on Image Processing, 18, 5, 929-941 (2009) · Zbl 1371.94439
[11] Zhang, L.; Bao, P., Edge detection by scale multiplication in wavelet domain, Pattern Recognition Letters, 23, 14, 1771-1784 (2002) · Zbl 1010.68138
[12] Lu, S.; Wang, Z.; Shen, J., Neuro-fuzzy synergism to the intelligent system for edge detection and enhancement, Pattern Recognition, 36, 10, 2395-2409 (2003) · Zbl 1039.68102
[13] Toivanen, P. J.; Ansamäki, J.; Parkkinen, J. P.S.; Mielikäinen, J., Edge detection in multispectral images using the self-organizing map, Pattern Recognition Letters, 24, 16, 2987-2994 (2003)
[14] Rakesh, R.; Chaudhuri, P.; Murthy, C., Thresholding in edge detection: a statistical approach, IEEE Transactions on Image Processing, 13, 7, 927-936 (2004)
[15] Abraham, I.; Abraham, R.; Desolneux, A.; Li-Thiao-Te, S., Significant edges in the case of non-stationary Gaussian noise, Pattern Recognition, 40, 11, 3277-3291 (2007) · Zbl 1120.68090
[16] Russo, F.; Ramponi, G., Edge extraction by fire operators, (Proceedings of the Third IEEE Conference on Fuzzy Systems, IEEE World Congress on Computational Intelligence, vol. 1 (1994)), 249-253
[17] De Baets, B.; Kerre, E.; Gupta, M., The fundamentals of fuzzy mathematical morphology. Part 1: basic concepts, International Journal of General Systems, 23, 155-171 (1994) · Zbl 0845.68106
[18] De Baets, B.; Kerre, E.; Gupta, M., The fundamentals of fuzzy mathematical morphology. Part 2: idempotence, convexity and decomposition, International Journal of General Systems, 23, 307-322 (1995) · Zbl 0845.68107
[19] Bustince, H.; Pagola, M.; Barrenechea, E., Construction of fuzzy indices from fuzzy DI-subset hood measures: application to the global comparison of images, Information Sciences, 177, 3, 906-929 (2007) · Zbl 1112.94033
[20] Bustince, H.; Barrenechea, E.; Pagola, M.; Fernandez, J., Interval-valued fuzzy sets constructed from matrices: application to edge detection, Fuzzy Sets and Systems, 160, 13, 1819-1840 (2009) · Zbl 1182.68191
[21] Kim, D.-S.; Lee, W.-H.; Kweon, I.-S., Automatic edge detection using 3×3 ideal binary pixel patterns and fuzzy-based edge thresholding, Pattern Recognition Letters, 25, 1, 101-106 (2004)
[22] Liang, L. R.; Looney, C. G., Competitive fuzzy edge detection, Applied Soft Computing, 3, 2, 123-137 (2003)
[23] Sun, G.; Liu, Q.; Liu, Q.; Ji, C.; Li, X., A novel approach for edge detection based on the theory of universal gravity, Pattern Recognition, 40, 10, 2766-2775 (2007) · Zbl 1132.68806
[24] I. Newton, Philosophiae Naturalis Principia Mathematica, University of California, 1999, original 1687, translation guided by I.B. Cohen.; I. Newton, Philosophiae Naturalis Principia Mathematica, University of California, 1999, original 1687, translation guided by I.B. Cohen.
[25] J. Ni, P. Matsakis, An equivalent definition of the histogram of forces: theoretical and algorithmic implications, Pattern Recognition 43 (4) (2010) 1607-1617.; J. Ni, P. Matsakis, An equivalent definition of the histogram of forces: theoretical and algorithmic implications, Pattern Recognition 43 (4) (2010) 1607-1617. · Zbl 1191.68596
[26] Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S., GSA: a gravitational search algorithm, Information Sciences, 179, 13, 2232-2248 (2009), (Special section on high order fuzzy sets) · Zbl 1177.90378
[27] Mertens, K.; De Baets, B.; Verbeke, L.; De Wulf, R., A sub-pixel mapping algorithm based on sub-pixel/pixel spatial attraction models, International Journal of Remote Sensing, 27, 3293-3310 (2006)
[28] Medina-Carnicer, R.; Madrid-Cuevas, F.; Carmona-Poyato, A.; noz Salinas, R. M., On candidates selection for hysteresis thresholds in edge detection, Pattern Recognition, 42, 7, 1284-1296 (2009) · Zbl 1183.68543
[29] Beliakov, G.; Pradera, A.; Calvo, T., Aggregation Functions: A Guide for Practitioners, Studies in Fuzziness and Soft Computing, vol. 221 (2007), Springer · Zbl 1123.68124
[30] Klement, E. P.; Mesiar, R.; Pap, E., Triangular Norms (2000), Kluwer Academic Publishers · Zbl 0972.03002
[31] Alsina, C.; Frank, M. J.; Schweizer, B., Associative Functions: Triangular Norms and Copulas (2006), World Scientific Publishing Company · Zbl 1100.39023
[32] Tizhoosh, H. R., Image thresholding using type II fuzzy sets, Pattern Recognition, 38, 12, 2363-2372 (2005) · Zbl 1205.68351
[33] Vlachos, I. K.; Sergiadis, G. D., Intuitionistic fuzzy information—applications to pattern recognition, Pattern Recognition Letters, 28, 2, 197-206 (2007)
[34] Hung, W.-L.; Yang, M.-S.; Chen, D.-H., Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation, Pattern Recognition Letters, 29, 9, 1317-1325 (2008)
[35] Lindeberg, T., Edge detection and ridge detection with automatic scale selection, International Journal of Computer Vision, 30, 2, 117-156 (1998)
[36] Shih, M.-Y.; Tseng, D.-C., A wavelet-based multiresolution edge detection and tracking, Image and Vision Computing, 23, 4, 441-451 (2005)
[37] Fram, J.; Deutsch, E. S., Quantitative evaluation of edge detection algorithms and their comparison with human performance, IEEE Transactions on Computers C, 24, 6, 616-628 (1975) · Zbl 0302.68102
[38] Torre, V.; Poggio, T., On edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 147-163 (1984)
[39] Baddeley, A. J., An error metric for binary images, (Robust Computer Vision: Quality of Vision Algorithms (1992), Wichmann Verlag: Wichmann Verlag Karlsruhe), 59-78
[40] Medina-Carnicer, R.; Madrid-Cuevas, F., Unimodal thresholding for edge detection, Pattern Recognition, 41, 7, 2337-2346 (2008) · Zbl 1138.68511
[41] Medina-Carnicer, R.; Carmona-Poyato, A.; Muñoz Salinas, R.; Madrid-Cuevas, F. J., Determining hysteresis thresholds for edge detection by combining the advantages and disadvantages of thresholding methods, IEEE Transactions on Image Processing, 19, 1, 165-173 (2010) · Zbl 1371.94259
[42] Medina-Carnicer, R.; Madrid-Cuevas, F.; Muñoz Salinas, R.; Carmona-Poyato, A., Solving the process of hysteresis without determining the optimal thresholds, Pattern Recognition, 43, 4, 1224-1232 (2010) · Zbl 1192.68593
[43] Fernández-García, N.; Carmona-Poyato, A.; Medina-Carnicer, R.; Madrid-Cuevas, F., Automatic generation of consensus ground truth for the comparison of edge detection techniques, Image and Vision Computing, 26, 4, 496-511 (2008)
[44] Yitzhaky, Y.; Peli, E., A method for objective edge detection evaluation and detector parameter selection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 8, 1027-1033 (2003)
[45] Heath, M.; Sarkar, S.; Sanocki, T.; Bowyer, K., A robust visual method for assessing the relative performance of edge-detection algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 12, 1338-1359 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.