Janas, Jan; Simonov, Sergey A Weyl-Titchmarsh type formula for a discrete Schrödinger operator with Wigner-von Neumann potential. (English) Zbl 1205.47029 Stud. Math. 201, No. 2, 167-189 (2010). Summary: We consider a discrete Schrödinger operator \(\mathcal J\) with Wigner-von Neumann potential not belonging to \(l^2\). We find the asymptotics of orthonormal polynomials associated to \({\mathcal J}\). We prove a Weyl-Titchmarsh type formula, which relates the spectral density of \({\mathcal J}\) to a coefficient in the asymptotics of the orthonormal polynomials. Cited in 1 ReviewCited in 13 Documents MSC: 47B36 Jacobi (tridiagonal) operators (matrices) and generalizations 34E10 Perturbations, asymptotics of solutions to ordinary differential equations PDF BibTeX XML Cite \textit{J. Janas} and \textit{S. Simonov}, Stud. Math. 201, No. 2, 167--189 (2010; Zbl 1205.47029) Full Text: DOI arXiv OpenURL