Likelihood functions and some maximum likelihood estimators for symbolic data. (English) Zbl 1204.62026

Summary: Likelihood functions are the foundation of many statistical methodologies in classical data analysis. Likelihood functions for symbolic data must be introduced before these classical methods can be extended to the analysis of symbolic data. We propose a likelihood function for symbolic data and illustrate its applications by finding the maximum likelihood estimators for the mean and the variance of three common types of symbolic-valued random variables: interval-valued, histogram-valued and triangular-distribution-valued variables.


62F10 Point estimation
62F99 Parametric inference
Full Text: DOI


[1] Bertrand, P.; Goupil, F., Descriptive statistics for symbolic data, (), 106-124 · Zbl 0978.62005
[2] Billard, L., Dependencies and variation components of symbolic interval-valued data, (), 3-12 · Zbl 05486137
[3] Billard, L., 2008. Sample covariance functions for complex quantitative data. In: Proceedings of the International Association of Statistical Computing Conference 2008, Yokohama, Japan.
[4] Billard, L.; Diday, E., From the statistics of data to the statistics of knowledge: symbolic data analysis, Journal of the American statistical association, 98, 470-487, (2003)
[5] Billard, L.; Diday, E., Symbolic data analysis: conceptual statistics and data mining, (2006), Wiley New York · Zbl 1117.62002
[6] Billard, L.; Diday, E., Descriptive statistics for interval-valued observations in the presence of rules, Computational statistics, 21, 187-210, (2006) · Zbl 1114.62003
[7] Brito, P.; Polaillon, G., Structuring probabilist data by Galois lattices, Mathematics and social sciences, 43, 77-104, (2005)
[8] Casella, G.; Berger, R.L., Statistical inference, (2002), Duxbury California
[9] Diday, E., 1987. Introduction à l’Approache Symbolique en Analyse des Données. Premières Journées Symbolic-Numérique, CEREMADE, Université Paris, pp. 21-56.
[10] Diday, E., Probabilist, possibilist and belief objects for knowledge analysis, Annals of operations research, 55, 227-276, (1995) · Zbl 0844.68024
[11] Diday, E., Emilion, R., 1996. Lattices and capacities in analysis of probabilist objects. In: Diday, E., Lechevallier, Y., Opilz, O. (Eds.), Studies in Classification, pp. 13-30. · Zbl 0904.62002
[12] Diday, E.; Emilion, R., Treillis de Galois maximaux et capacités de Choquet, Comptes rendus de l’académie des sciences—series I -mathematics, 325, 261-266, (1997) · Zbl 0882.06005
[13] Diday E, Emilion R. 1998. Capacities and credibilities in analysis of probabilistic objects by histograms and lattices. In: Hayashi, C., Ohsumi, N., Yajima, K., Tanaka, Y., Bock, H.-H., Baba, Y. (Eds.), Data Science, Classification, and Related Methods, pp. 353-357. · Zbl 0894.62007
[14] Diday, E.; Emilion, R., Maximal and stochastic Galois lattices, Discrete applied mathematics, 127, 271-284, (2003) · Zbl 1026.06009
[15] Diday, E.; Emilion, R.; Hillali, Y., Symbolic data analysis of probabilistic objects by capacities and credibilities, Societea’ italiana di statistica, 5-22, (1996)
[16] Emilion, R., Différentiation des capacitiés, Comptes rendus de l’academie des sciences—series I—mathematics, 324, 389-392, (1997) · Zbl 0885.28002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.