×

zbMATH — the first resource for mathematics

Fuzzy Lipschitz maps and fixed point theorems in fuzzy metric spaces. (English) Zbl 1204.54008
In this paper, the notions of fuzzy Lipschitz map and fuzzy Lipschitz distance are introduced between two fuzzy metric spaces. The notion of minimal slope of a map is introduced, which is defined by the ratio of two fuzzy metrics, and some properties on it and relations with the dilation are derived.

MSC:
54A40 Fuzzy topology
03E72 Theory of fuzzy sets, etc.
54E35 Metric spaces, metrizability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Deng, Z.-K., Fuzzy pseudometric spaces, J. math. anal. appl., 86, 74-95, (1982)
[2] Erceg, M.A., Metric spaces in fuzzy set theory, J. math. anal. appl., 69, 205-230, (1979) · Zbl 0409.54007
[3] Fang, J.X., On fixed point theorems in fuzzy metric spaces, Fuzzy sets and systems, 46, 107-113, (1992) · Zbl 0766.54045
[4] George, A.; Veeramani, P., On some results in fuzzy metric spaces, Fuzzy sets and systems, 64, 395-399, (1994) · Zbl 0843.54014
[5] George, A.; Veeramani, P., On some results of analysis for fuzzy metric spaces, Fuzzy sets and systems, 90, 365-368, (1997) · Zbl 0917.54010
[6] Grabiec, M., Fixed points in fuzzy metric spaces, Fuzzy sets and systems, 27, 385-389, (1988) · Zbl 0664.54032
[7] Gregori, V.; Romaguera, S., Some properties of fuzzy metric spaces, Fuzzy sets and systems, 115, 485-489, (2000) · Zbl 0985.54007
[8] Gregori, V.; Romaguera, S., On completion of fuzzy metric spaces, Fuzzy sets and systems, 130, 399-404, (2002) · Zbl 1010.54002
[9] Gregori, V.; Sapena, A., On fixed-point theorems in fuzzy metric spaces, Fuzzy sets and systems, 125, 245-252, (2002) · Zbl 0995.54046
[10] Kaleva, O.; Seikkala, S., On fuzzy metric spaces, Fuzzy sets and systems, 12, 215-229, (1984) · Zbl 0558.54003
[11] E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Position paper I: basic analytical and algebraic properties, Fuzzy Sets and Systems 143 (2004) 5-26. · Zbl 1038.03027
[12] E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Position paper II: general construction and parametrized families, Fuzzy Sets and Systems 145 (2004) 411-438. · Zbl 1059.03012
[13] E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Position paper III: continuous t-norms, Fuzzy Sets and Systems 145 (2004) 439-545. · Zbl 1059.03013
[14] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms, (2000), Kluwer Academic Publishers Dordrecht · Zbl 0972.03002
[15] Kramosil, I.; Michalek, J., Fuzzy metrics and statistical metric spaces, Kybernetika, 11, 336-344, (1975) · Zbl 0319.54002
[16] Menger, K., Statistical metrics, Proc. nat. acad. sci., 28, 535-537, (1942) · Zbl 0063.03886
[17] Mihet, D., On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy sets and systems, 158, 915-921, (2007) · Zbl 1117.54008
[18] Pap, E.; Hadžić, O.; Mesiar, R., A fixed point theorem in probabilistic metric spaces and an application, J. math. anal. appl., 202, 433-449, (1996) · Zbl 0855.54043
[19] Schweizer, B.; Sklar, A., Statistical metric spaces, Pacific J. math., 10, 314-334, (1960) · Zbl 0091.29801
[20] Tardiff, R.M., Contraction maps on probabilistic metric spaces, J. math. anal. appl., 165, 517-523, (1992) · Zbl 0773.54033
[21] G. Yun, S. Hwang, J. Chang, Fuzzy isometries and non-existence of fuzzy contractive maps on fuzzy metric spaces, preprint.
[22] Zadeh, L.A., Fuzzy sets, Inform. and control, 8, 338-353, (1965) · Zbl 0139.24606
[23] Žikić, T., On fixed point theorems of gregori and sapena, Fuzzy sets and systems, 144, 421-429, (2004) · Zbl 1052.54006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.