×

Optimal control of the transmission dynamics of tuberculosis. (English) Zbl 1204.49044

Summary: This paper deals with the problem of optimal control for the transmission dynamics of tuberculosis (TB). A tuberculosis model which incorporates the essential biological and epidemiological features of the disease such as exogenous reinfection and chemoprophylaxis of latently infected individuals, and treatment of the infectious is developed and rigorously analyzed. Based on this continuous model, the tuberculosis control is formulated and solved as an optimal control theory problem, indicating how a control term on the chemoprophylaxis should be introduced in the population to reduce the number of individuals with active TB. The feedback control law has been proved to be capable of reducing the number of individuals with active TB. An advantage is that the proposed scheme accounts for the energy wasted by the controller and the closed-loop performance on tracking. Numerical results show the performance of the optimization strategy.

MSC:

49N90 Applications of optimal control and differential games
92D30 Epidemiology
93C95 Application models in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dye, C., Scheele, S., Dolin, P., Pathania, V., Raviglione, M.: For the WHO global surveillance and monitoring project: Global burden of tuberculosis estimated incidence, prevalence and mortality by country. JAMA 282, 677–686 (1999) · doi:10.1001/jama.282.7.677
[2] Raviglione, M., Dye, C., Schmidt, S., Kochi, A.: For the global surveillance and monitoring project: Assessment of worldwide tuberculosis control. Lancet 350, 624–629 (1997) · doi:10.1016/S0140-6736(97)04146-9
[3] Raviglione, M.: Evolution of WHO, 1948–2001 policies for tuberculosis control. Lancet 359, 775–780 (2002) · doi:10.1016/S0140-6736(02)07880-7
[4] World Health Organization: Global tuberculosis control: Surveillance, planning, financing. World Health Organization, Geneva, Switzerland (2009)
[5] Frieden, T., Driver, R.: Tuberculosis control: Past 10 years and future progress. Tuberculosis 83, 82–85 (2003) · doi:10.1016/S1472-9792(02)00060-4
[6] De Cock, K., Chaisson, R.: Will dots do it? A reappraisal of tuberculosis control in countries with high rates of HIV infection. Tuberc. Lung Dis. 3, 457–465 (1999)
[7] Aparicio, J., Capurro, A., Chavez, C.: Markers of disease evolution: The case of tuberculosis. Theor. Biol. 215, 227–237 (2002) · doi:10.1006/jtbi.2001.2489
[8] Blower, S., Porco, T., Lietman, T.: Tuberculosis: The evolution of antibiotic resistance and the design of epidemic control strategies. In: Horn, M.A., Simonett, G., Webb, G.F. (eds.) Mathematical Models in Medical and Health Sciences. Vanderbilt University Press, Nashville (1998) · Zbl 0929.92022
[9] Davies, P.: Multi-drug resistant tuberculosis. Priory Lodge Education Ltd. (1999)
[10] Porco, T., Blower, S.: Quantifying the intrinsic transmission dynamics of tuberculosis. Theor. Popul. Biol. 54, 117–132 (1998) · Zbl 0921.92018 · doi:10.1006/tpbi.1998.1366
[11] Snider, D., Raviglione, M., Kochi, A.: Global burden of tuberculosis. In: Bloom, B. (ed.) Tuberculosis Pathogenesis and Control, pp. 3–11. American Society for Microbiology, Washington (1994)
[12] Smith, P., Moss, A.: Epidemiology of tuberculosis. In: Bloom, B. (ed.) Tuberculosis Pathogenesis and Control, pp. 47–59. American Society for Microbiology, Washington (1994)
[13] Miller, B.: Preventive therapy for tuberculosis. Med. Clin. North Am. 77, 1263–1275 (1993)
[14] Feng, Z., Chavez, C., Capurro, A.: A model for tuberculosis with exogenous reinfection. Theor. Popul. Biol. 57, 235–247 (2000) · Zbl 0972.92016 · doi:10.1006/tpbi.2000.1451
[15] Styblo, K.: Epidemiology of tuberculosis: Selected papers, Royal Netherlands Tuberculosis Association (1991)
[16] Vynnycky, E., Fine, P.: The long-term dynamics of tuberculosis and other diseases with long serial: The implications of and for changing reproduction numbers. Epidemiol. Infect. 121, 309–324 (1998) · doi:10.1017/S0950268898001113
[17] Driessche, V., Wang, P., Zou, X.: Modeling diseases with latency and relapse. Math. Biosci. Eng. 4(2), 205–219 (2007) · Zbl 1123.92018
[18] Chin, J.: Control of Communicable Diseases Manual. American Public Health Association, Washington (1999)
[19] Harries, A., Hargreaves, N.: Relapse and recurrent tuberculosis in the context of a national tuberculosis control programme. Trans. R. Soc. Trop. Med. Hyg. 94, 247–249 (2000) · doi:10.1016/S0035-9203(00)90306-7
[20] Driver, C., Munsiff, S., Li, J., Kundamal, N., Osahan, S.S.: Relapse in persons treated for drug-susceptible tuberculosis in a population with high coinfection with human immunodeficiency virus in New York city. Clin. Infect. Dis. 33, 1762–1769 (2001) · doi:10.1086/323784
[21] Blower, S., McLean, A., Porco, T.C., Small, P.M., Hopewell, P.C., Sanchez, M.A., Mossi, A.R.: The intrinsic transmission dynamics of tuberculosis epidemics. Nat. Med. 1(8), 44 (1995) · doi:10.1038/nm0895-815
[22] Blower, S., Gerberding, J.: Understanding, predicting and controlling the emergence of drug-resistant tuberculosis: A theoretical framework. J. Mol. Med. 76, 624–636 (1998) · doi:10.1007/s001090050260
[23] Blower, S., Small, P., Hopewell, P.: Control strategies for tuberculosis epidemics: New models for old problems. Science 273, 497–500 (1996) · doi:10.1126/science.273.5274.497
[24] Chavez, C., Feng, Z.: To treat or not to treat: The case of tuberculosis. Math. Biol. 35, 629–659 (1997) · Zbl 0895.92024 · doi:10.1007/s002850050069
[25] Chavez, C., Feng, Z.: Global stability of an age-structure model for TB and its applications to optimal vaccination strategies. Math. Biosci. 151, 135–154 (1998) · Zbl 0981.92029 · doi:10.1016/S0025-5564(98)10016-0
[26] Porco, T., Blower, S.: Quantifying the intrinsic transmission dynamics of tuberculosis. Theor. Popul. Biol. 54, 117–132 (1998) · Zbl 0921.92018 · doi:10.1006/tpbi.1998.1366
[27] Bhunu, C., Garira, W., Zimba, M.: Tuberculosis transmission model with chemoprophylaxis and treatment. Bull. Math. Biol. 70, 1163–1191 (2008) · Zbl 1142.92016 · doi:10.1007/s11538-008-9295-4
[28] Bhunu, C., Garira, W., Mukandavire, Z., Magombedze, G.: Modelling the effects of pre-exposure and post-exposure vaccines in tuberculosis control. J. Theor. Biol. 254, 633–649 (2008) · Zbl 1400.92465 · doi:10.1016/j.jtbi.2008.06.023
[29] McCluskey, C.C.: Lyapunov functions for tuberculosis models with fast and slow progression. Math. Biosci. Eng. 3, 603–614 (2006) · Zbl 1113.92057
[30] Fister, K., Lenhart, S., McNally, J.: Optimizing chemotherapy in an HIV model. Electron. J. Differ. Equ. 1998, 1–12 (1998) · Zbl 1068.92503
[31] Kirschner, D., Lenhart, S., Serbin, S.: Optimal control of the chemotherapy of HIV. Math. Biol. 35, 775–792 (1997) · Zbl 0876.92016 · doi:10.1007/s002850050076
[32] Agusto, F.B.: Optimal chemoprophylaxis and treatment control strategies of a tuberculosis transmission model. World J. Model Simul. 5, 163–173 (2009)
[33] Jung, E., Lenhart, S., Feng, Z.: Optimal control of treatments in a two-strain tuberculosis model. Discrete Contin. Dyn. Syst. B 2(4), 473–482 (2002) · Zbl 1005.92018 · doi:10.3934/dcdsb.2002.2.473
[34] Yan, X., Zou, Y., Li, J.: Optimal quarantine and isolation strategies in epidemics control. World J. Mod. Simul 33, 202–211 (2007)
[35] Anderson, B.D.O., Moor, J.B.: Optimal Control: Linear Quadratic Methods. Prentice Hall, New York (1990)
[36] Fleming, W., Rishel, R.: Deterministic and Stochastic Optimal Control. Springer, New York (1975) · Zbl 0323.49001
[37] Lenhart, S., Workman, J.: Optimal Control Applied to Biological Models. Chapman and Hall, London (2007) · Zbl 1291.92010
[38] Souza, J., Caetano, M., Yoneyama, T.: Optimal control theory applied to the anti-viral treatment of AIDS. In: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 5, pp. 4839–4844 (2000)
[39] Lenhart, S., Yong, J.: Optimal control for degenerate parabolic equations with logistic growth preprint institute for mathematics and application (1997)
[40] Lukes, D.: Differential Equations: Classical to Controlled, Mathematics in Science and Engineering. Academic Press, New York (1982) · Zbl 0509.34003
[41] Brogan, W.L.: Modern Control Theory, 3rd edn. Prentice Hall, Englewood Cliffs (1991) · Zbl 0747.93001
[42] May, R.M.: Uses and abuses of mathematics in biology. Science 303, 790–793 (2004) · doi:10.1126/science.1094442
[43] National Institute of Statistics: Evolution des systèmes statistiques nationaux, Cameroun (2007)
[44] National Committee of Fight Against Tuberculosis: Guide de personnel de la santé, Cameroun (2008)
[45] Birkhoff, G., Rota, C.: Ordinary Differential Equations, 4th edn. Wiley, New York (1998) · Zbl 0183.35601
[46] Hutson, V., Schmitt, K.: Permanence and the dynamics of biological systems. Math. Biosci. 111, 1–71 (1992) · Zbl 0783.92002 · doi:10.1016/0025-5564(92)90078-B
[47] Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–28 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[48] Dushoff, J., Huang, W., Castillo-Chavez, C.: Backward bifurcations and catastrophe in simple models of fatal diseases. J. Math. Biol. 36, 227–248 (1998) · Zbl 0917.92022 · doi:10.1007/s002850050099
[49] Brauer, F.: Backward bifurcation in simple vaccination models. J. Math. Anal. Appl. 298, 418–431 (2004) · Zbl 1063.92037 · doi:10.1016/j.jmaa.2004.05.045
[50] Chiang, C.Y., Riley, L.W.: Exogenous reinfection in tuberculosis. Lancet Infect. Dis. 5, 629–636 (2005) · doi:10.1016/S1473-3099(05)70240-1
[51] Arino, J., McCluskey, C.C., van den Driessche, P.: Global result for an epidemic model with vaccination that exhibits backward bifurcation. SIAM J. Appl. Math. 64, 260–276 (2003) · Zbl 1034.92025 · doi:10.1137/S0036139902413829
[52] Sharomi, O., Podder, C.N., Gumel, A.B., Elbasha, E.H., Watmough, J.: Role of incidence function in vaccine-induced backward bifurcation in some HIV models. Math. Biosci. 210, 436–463 (2007) · Zbl 1134.92026 · doi:10.1016/j.mbs.2007.05.012
[53] Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability Analysis of Nonlinear Systems. Dekker, New York (1989) · Zbl 0676.34003
[54] Smith, H.L., Waltmann, P.: The Theory of the Chemostat. Cambridge University Press, Cambridge (1995)
[55] Jiang, Z.P., Praly, L.: Design of robust adaptive controllers for nonlinear systems with dynamics uncertainties. Automatica 34, 825–832 (1998) · Zbl 0951.93042 · doi:10.1016/S0005-1098(98)00018-1
[56] Bowong, S., Moukam Kakmeni, F.M., Koina, R.: Chaos synchronization and duration time of a class of uncertain chaotic systems. Math. Comput. Simul. 11, 212–228 (2006) · Zbl 1161.37317 · doi:10.1016/j.matcom.2006.01.006
[57] Rafikov, M., Balthazar, J.M.: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Commun. Non. Sci. Numer. Simul. 13, 1246–1255 (2008) · Zbl 1221.93230 · doi:10.1016/j.cnsns.2006.12.011
[58] Pontryagin, S., Boltyanskii, V., Gamkrelidze, R.V., Mischenko, E.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)
[59] Wyse, A.P.P., Bevilacqua, L., Rafikov, M.: Simulating malaria model for different treatment intensities in a variable environment. Ecol. Model. 206, 322–330 (2007) · doi:10.1016/j.ecolmodel.2007.03.038
[60] Bellman, R.E.: Introduction to Mathematical Theory of Control Processes. Academic Press, New York (1967) · Zbl 0164.39601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.