×

Analytical impulse response of a fractional second order filter and its impulse response invariant discretization. (English) Zbl 1203.94039

Summary: We derive the impulse response of a fractional second order filter of the form \((s^{2}+as+b)^{- \gamma }\), where \(a,b \geq 0\) and \(\gamma >0\). The asymptotic properties of the impulse responses are obtained. Moreover, based on the derived analytical impulse response, we show how to perform the discretization of the above fractional second order filter. Finally, a number of illustrated examples in time and frequency domains are provided as proofs of concepts.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
34A08 Fractional ordinary differential equations

Software:

CRONE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Oldham, K. B.; Spanier, J.: The fractional calculus, (1974) · Zbl 0292.26011
[2] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993) · Zbl 0789.26002
[3] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[4] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, north-holland mathematics studies, vol. 204, (2006) · Zbl 1092.45003
[5] Bagley, R. L.; Torvik, P. J.: A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of rheology 27, No. 3, 201-210 (1983) · Zbl 0515.76012 · doi:10.1122/1.549724
[6] A. Oustaloup, La commande CRONE, Hermès, Paris, France, 1991 (in French).
[7] Podlubny, I.: Fractional-order systems and \(PI{\lambda}\)D\({\mu}\)-controllers, IEEE transactions on automatic control 44, No. 1, 208-214 (January 1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[8] Laskin, N.: Fractional Schrödinger equation, Physical review E 66, No. 5, 056108 (2002)
[9] Machado, J. A. Tenreiro: Analysis and design of fractional-order digital control systems, Systems analysis modelling simulation 27, No. 2–3, 107-122 (1997) · Zbl 0875.93154
[10] B.M. Vinagre, I. Petras, P. Merchan, L. Dorcak, Two digital realization of fractional controllers: application to temperature control of a solid, in: Proceedings of the European Control Conference (ECC2001), Porto, Portugal, 2001, pp. 1764–1767.
[11] Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F. M.: Frequency-band complex noninteger differentiator: characterization and synthesis, IEEE transactions on circuits and systems I: Fundamental theory and applications 47, No. 1, 25-39 (January 2000)
[12] Chen, Y. Q.; Moore, K. L.: Discretization schemes for fractional-order differentiators and integrators, IEEE transactions on circuits and systems I: Fundamental theory and applications 49, No. 3, 363-367 (March 2002) · Zbl 1368.65035
[13] Chen, Y. Q.; Vinagre, B. M.: A new IIR-type digital fractional order differentiator, Signal processing 83, No. 11, 2359-2365 (2003) · Zbl 1145.93423 · doi:10.1016/S0165-1684(03)00188-9
[14] Lubich, Ch.: Discretized fractional calculus, SIAM journal on mathematical analysis 17, No. 3, 704-719 (1986) · Zbl 0624.65015 · doi:10.1137/0517050
[15] Chen, Y. Q.; Vinagre, B. M.; Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives–an expository review, Nonlinear dynamics 38 (December 2004) · Zbl 1134.93300 · doi:10.1007/s11071-004-3752-x
[16] Vinagre, B. M.; Chen, Y. Q.; Petras, I.: Two direct tustin discretization methods for fractional-order differentiator/integrator, Journal of the franklin institute 340 (August 2003) · Zbl 1051.93031 · doi:10.1016/j.jfranklin.2003.08.001
[17] Barbosa, R. S.; Machado, J. A. Tenreiro: Implementation of discrete-time fractional-order controllers based on LS approximations, Acta polytechnica hungarica 3, No. 4, 5-22 (2006)
[18] Ferdi, Y.: Impulse invariance-based method for the computation of fractional integral of order \(0{\alpha}\)1, Computers and electrical engineering 35, No. 5, 722-729 (2009) · Zbl 1171.94313 · doi:10.1016/j.compeleceng.2009.02.005
[19] Oustaloup, A.: Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulation, IEEE transactions on circuits and systems 28, No. 10, 1007-1009 (October 1981)
[20] Radwan, A. G.; Elwakil, A. S.; Soliman, A. M.: Fractional-order sinusoidal oscillators: design procedure and practical examples, IEEE transactions on circuits and systems I: Regular papers 55, No. 7, 2051-2063 (August 2008) · Zbl 1191.94175
[21] A.G. Radwan, A.M. Soliman, A.S. Elwakil, Design equations for fractional-order sinusoidal oscillators: practical circuit examples, in: Proceedings of the International Conference on Microelectronics, December 2007, pp. 89–92.
[22] Lim, S. C.; Teo, L. P.: The fractional oscillator process with two indices, Journal of physics A: mathematical and theoretical 42, 065208 (2009) · Zbl 1156.82010 · doi:10.1088/1751-8113/42/6/065208
[23] Davies, B.: Integral transforms and their applications, (2002) · Zbl 0996.44001
[24] Jury, E. I.: Theory and application of the Z-transform method, (1973) · Zbl 0273.93017
[25] Tarasov, V. E.: Fractional derivative as fractional power of derivative, International journal of mathematics 18, No. 3, 281-299 (2007) · Zbl 1119.26011 · doi:10.1142/S0129167X07004102
[26] Chen, Y. Q.; Moore, K. L.: Analytical stability bound for a class of delayed fractional order dynamic systems, Nonlinear dynamics 29, 191-200 (2002) · Zbl 1020.34064 · doi:10.1023/A:1016591006562
[27] Sabatier, J.; Agrawal, O. P.; Machado, J. A. Tenreiro: Advances in fractional calculus–theoretical developments and applications in physics and engineering, (2007) · Zbl 1116.00014
[28] J.O. Smith, Physical Audio Signal Processing. \langlehttp://ccrma.stanford.edu/jos/pasp/ angle, 2008. online book.
[29] Saxena, R. K.; Mathai, A. M.; Haubold, H. J.: On generalized fractional kinetic equations, Physica A: statistical mechanics and its applications 344, 657-664 (December 2004)
[30] Parks, T. W.; Burrus, C. S.: Digital filter design, (1987) · Zbl 0632.93001
[31] Signal Processing Toolbox 6.12. \langlehttp://www.mathworks.com/products/signal angle.
[32] Y.Q. Chen, Low-pass IIR digital differentiator design. \langlehttp://www.mathworks.com/matlabcentral/fileexchange/3517 angle, 2003.
[33] Y.Q. Chen, A New IIR-type Digital Fractional order differentiator. \langlehttp://www.mathworks.com/matlabcentral/fileexchange/3518 angle, 2003. · Zbl 1145.93423
[34] Y.Q. Chen, Impulse response invariant discretization of fractional order integrators/differentiators. \langlehttp://www.mathworks.com/matlabcentral/fileexchange/21342 angle, 2008.
[35] Y.Q. Chen, Impulse response invariant discretization of fractional order low-pass filters. \langlehttp://www.mathworks.com/matlabcentral/fileexchange/21365 angle, 2008.
[36] H. Sheng, Impulse Response Invariant Discretization of Fractional Second Order Filter. \langlehttp://www.mathworks.com/matlabcentral/fileexchange/26442 angle, 2010.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.