×

zbMATH — the first resource for mathematics

The universal extra dimensional model with \(S^{2}/Z_{2}\) extra-space. (English) Zbl 1203.83070
Summary: We propose a new universal extra dimensional model that is defined on a six-dimensional spacetime which has a two-sphere orbifold \(S^{2}/Z_{2}\) as an extra-space. We specify our model by choosing the gauge symmetry as \(SU(3)\times SU(2)\times U(1)_Y\times U(1)_X\), introducing field contents in six dimensions as their zero modes correspond to the standard model particles, and determining a boundary condition of these fields on orbifold \(S^{2}/Z_{2}\). A background gauge field that belongs to \(U(1)_X\) is introduced there, which is necessary to obtain massless chiral fermions in four-dimensional spacetime. We then analyze Kaluza-Klein (KK) mode expansion of the fields in our model and derive the mass spectrum of the KK particles. We find that the lightest KK particles are the 1st KK particles of massless gauge bosons at tree level. We also discuss the KK parity of the KK modes in our model and confirm the stability of the lightest KK particle which is important for dark matter physics.

MSC:
83F05 Relativistic cosmology
83E15 Kaluza-Klein and other higher-dimensional theories
81V22 Unified quantum theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Appelquist, T.; Cheng, H.C.; Dobrescu, B.A., Phys. rev. D, 64, 035002, (2001)
[2] Antoniadis, I., Phys. lett. B, 246, 377, (1990)
[3] Agashe, K.; Deshpande, N.G.; Wu, G.H.; Agashe, K.; Deshpande, N.G.; Wu, G.H.; Appelquist, T.; Dobrescu, B.A.; Appelquist, T.; Yee, H.U.; Oliver, J.F.; Papavassiliou, J.; Santamaria, A.; Chakraverty, D.; Huitu, K.; Kundu, A.; Buras, A.J.; Spranger, M.; Weiler, A.; Colangelo, P.; De Fazio, F.; Ferrandes, R.; Pham, T.N.; Gogoladze, I.; Macesanu, C., Phys. lett. B, Phys. lett. B, Phys. lett. B, Phys. rev. D, Phys. rev. D, Phys. lett. B, Nucl. phys. B, Phys. rev. D, Phys. rev. D, 74, 093012, (2006)
[4] Cheng, H.C.; Feng, J.L.; Matchev, K.T.; Servant, G.; Tait, T.M.P.; Kakizaki, M.; Matsumoto, S.; Sato, Y.; Senami, M.; Matsumoto, S.; Senami, M.; Burnell, F.; Kribs, G.D.; Kakizaki, M.; Matsumoto, S.; Senami, M.; Kong, K.; Matchev, K.T.; Matsumoto, S.; Sato, J.; Senami, M.; Yamanaka, M., Phys. rev. lett., Nucl. phys. B, Phys. rev. D, Phys. lett. B, Phys. rev. D, Phys. rev. D, Jhep, Phys. rev. D, 76, 043528, (2007)
[5] Datta, A.; Kong, K.; Matchev, K.T.; Datta, A.; Kong, K.; Matchev, K.T.; Matsumoto, S.; Sato, J.; Senami, M.; Yamanaka, M., Phys. rev. D, Phys. rev. D, 72, 119901, (2005), (Erratum)
[6] Matsumoto, S.; Sato, J.; Senami, M.; Yamanaka, M., Phys. lett. B, 647, 466, (2007)
[7] Dobrescu, B.A.; Poppitz, E., Phys. rev. lett., 87, 031801, (2001)
[8] Appelquist, T.; Dobrescu, B.A.; Ponton, E.; Yee, H.U., Phys. rev. lett., 87, 181802, (2001)
[9] Randjbar-Daemi, S.; Salam, A.; Strathdee, J.A., Nucl. phys. B, 214, 491, (1983)
[10] Randjbar-Daemi, S.; Salam, A.; Strathdee, J.A.; Randjbar-Daemi, S.; Salam, A.; Strathdee, J.A., Phys. lett. B, Phys. lett. B, 144, 455, (1984), (Erratum)
[11] Manton, N.S., Nucl. phys. B, 158, 141, (1979)
[12] Lim, C.S.; Maru, N.; Hasegawa, K., J. phys. soc. jap., 77, 074101, (2008)
[13] Nomura, T.; Sato, J., Nucl. phys. B, 811, 109, (2009)
[14] Lichnerowicz, A., Bull. soc. math. fr., 92, 11, (1964)
[15] Abrikosov, A.A.
[16] Horvath, Z.; Palla, L.; Cremmer, E.; Scherk, J., Nucl. phys. B, 127, 57, (1977)
[17] Randjbar-Daemi, S.; Percacci, R., Phys. lett. B, 117, 41, (1982)
[18] Scrucca, C.A.; Serone, M.; Silvestrini, L., Nucl. phys. B, 669, 128, (2003)
[19] Cheng, H.; Matchev, K.T.; Schmaltz, M., Phys. rev. D, 66, 036005, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.