×

zbMATH — the first resource for mathematics

Heterotic weight lifting. (English) Zbl 1203.81147
Summary: We describe a method for constructing genuinely asymmetric (2,0) heterotic strings out of \(N=2\) minimal models in the fermionic sector, whereas the bosonic sector is only partly build out of \(N=2\) minimal models. This is achieved by replacing one minimal model plus the superfluous \(E_{8}\) factor by a non-supersymmetric CFT with identical modular properties. This CFT generically lifts the weights in the bosonic sector, giving rise to a spectrum with fewer massless states. We identify more than 30 such lifts, and we expect many more to exist. This yields more than 450 different combinations. Remarkably, despite the lifting of all Ramond states, it is still possible to get chiral spectra. Even more surprisingly, these chiral spectra include examples with a certain number of chiral families of \(SO(10),\; SU(5)\) or other subgroups, including just \(SU(3)\times SU(2)\times U(1)\). The number of families and mirror families is typically smaller than in standard Gepner models. Furthermore, in a large number of different cases, spectra with three chiral families can be obtained. Based on a first scan of about 10% of the lifted Gepner models we can construct, we have collected more than 10,000 distinct spectra with three families, including examples without mirror fermions. We present an example where the GUT group is completely broken to the standard model, but the resulting and inevitable fractionally charged particles are confined by an additional gauge group factor.

MSC:
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81V22 Unified quantum theories
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Lerche, W.; Lüst, D.; Schellekens, A.N., Nucl. phys. B, 287, 477, (1987)
[2] Candelas, P.; Horowitz, G.T.; Strominger, A.; Witten, E., Nucl. phys. B, 258, 46, (1985)
[3] Gepner, D., Nucl. phys. B, 296, 757, (1988)
[4] Narain, K.S., Phys. lett. B, 169, 41, (1986)
[5] Kawai, H.; Lewellen, D.C.; Tye, S.H.H.; Kawai, H.; Lewellen, D.C.; Tye, S.H.H., Phys. rev. lett., Phys. rev. lett., 58, 429, (1987), Erratum
[6] Antoniadis, I.; Bachas, C.P.; Kounnas, C., Nucl. phys. B, 289, 87, (1987)
[7] Narain, K.S.; Sarmadi, M.H.; Vafa, C., Nucl. phys. B, 288, 551, (1987)
[8] Schellekens, A.N.; Yankielowicz, S., Nucl. phys. B, 330, 103, (1990)
[9] Schellekens, A.N.; Yankielowicz, S., Nucl. phys. B, 327, 673, (1989)
[10] Intriligator, K.A., Nucl. phys. B, 332, 541, (1990)
[11] Gato-Rivera, B.; Schellekens, A.N., Commun. math. phys., 145, 85, (1992)
[12] Kreuzer, M.; Schellekens, A.N., Nucl. phys. B, 411, 97, (1994)
[13] Schellekens, A.N., Phys. lett. B, 237, 363, (1990)
[14] Blumenhagen, R.; Wisskirchen, A., Nucl. phys. B, 454, 561, (1995)
[15] Blumenhagen, R.; Schimmrigk, R.; Wisskirchen, A., Nucl. phys. B, 461, 460, (1996)
[16] Blumenhagen, R.; Wisskirchen, A., Mod. phys. lett. A, 11, 1475, (1996)
[17] Blumenhagen, R.; Wisskirchen, A., Nucl. phys. B, 475, 225, (1996)
[18] Blumenhagen, R.; Schimmrigk, R.; Wisskirchen, A., Nucl. phys. B, 486, 598, (1997)
[19] Kachru, S., Phys. lett. B, 349, 76, (1995)
[20] Distler, J.; Kachru, S., Nucl. phys. B, 442, 64, (1995)
[21] Berglund, P.; Johnson, C.V.; Kachru, S.; Zaugg, P., Nucl. phys. B, 460, 252, (1996)
[22] Kreuzer, M.
[23] Lebedev, O.; Nilles, H.P.; Raby, S.; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, P.K.S.; Wingerter, A., Phys. lett. B, 645, 88, (2007)
[24] Faraggi, A.E.; Kounnas, C.; Rizos, J., Phys. lett. B, 648, 84, (2007)
[25] Gepner, D.
[26] B. Gato-Rivera, A.N. Schellekens, A-symmetric Gepner models (revisited), in preparation · Zbl 1207.81119
[27] Kazama, Y.; Suzuki, H., Nucl. phys. B, 321, 232, (1989)
[28] Schellekens, A.N., Commun. math. phys., 153, 159, (1993)
[29] Lutken, C.A.; Ross, G.G., Phys. lett. B, 213, 152, (1988)
[30] Fuchs, J.; Klemm, A.; Scheich, C.; Schmidt, M.G., Ann. phys., 204, 1, (1990)
[31] Schellekens, A.N.; Warner, N.P., Nucl. phys. B, 287, 317, (1987)
[32] Dijkstra, T.P.T.; Huiszoon, L.R.; Schellekens, A.N.; Dijkstra, T.P.T.; Huiszoon, L.R.; Schellekens, A.N., Phys. lett. B, Nucl. phys. B, 710, 3, (2005)
[33] Dienes, K.R., Phys. rev. D, 73, 106010, (2006)
[34] Gmeiner, F.; Blumenhagen, R.; Honecker, G.; Lust, D.; Weigand, T., Jhep, 0601, 004, (2006)
[35] Gato-Rivera, B.; Schellekens, A.N., Phys. lett. B, 632, 728, (2006)
[36] Gato-Rivera, B.; Schellekens, A.N., Phys. lett. B, 671, 105, (2009)
[37] Anastasopoulos, P.; Dijkstra, T.P.T.; Kiritsis, E.; Schellekens, A.N., Nucl. phys. B, 759, 83, (2006)
[38] Gmeiner, F.; Honecker, G., Jhep, 0807, 052, (2008)
[39] Greene, B.R.; Vafa, C.; Warner, N.P., Nucl. phys. B, 324, 371, (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.