×

zbMATH — the first resource for mathematics

Modeling of the transport phenomena in GMAW using argon-helium mixtures. II: The metal. (English) Zbl 1203.80013
Summary: In this Part II [for Part I, see the authors, ibid. 53, No. 25–26, 5707-5721 (2010; Zbl 1203.80016)], the effects of shielding gas compositions on transport phenomena in the metal are reported which include the transient processes of electrode melting; droplet formation, detachment, transfer and impingement onto the workpiece; weld pool dynamics and weld bead formation. It was found from the present study that electromagnetic force, which is affected by shielding gas compositions, plays the most significant role in determining the behaviors of metal transfer. For the same welding power input, the increase of helium content in the mixture leads to the formation of larger droplets and the decrease of droplet detachment frequency. The predicted phenomena on metal transfer are consistent with the reported experimental observations. Detailed discussions about the reasons causing the very interesting and unusual transport phenomena in the metal are given.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
80A22 Stefan problems, phase changes, etc.
78A30 Electro- and magnetostatics
78A55 Technical applications of optics and electromagnetic theory
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
80-05 Experimental work for problems pertaining to classical thermodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rao, Z. H.; Hu, J.; Liao, S. M.; Tsai, H. L.: Modeling of the transport phenomena in GMAW using argon – helium mixtures. Part I - the arc, Int. J. Heat mass transfer 53, 5707-5721 (2010) · Zbl 1203.80016 · doi:10.1016/j.ijheatmasstransfer.2010.08.009
[2] D.B. Holliday, Gas – Metal Arc Welding, in: D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards (Eds.), ASM Handbook, vol. 6: Welding, Brazing, and Soldering, American Society for Metals, Metals Park, OH, 1993, pp. 180-185.
[3] Haidar, J.: An analysis of the formation of metal droplets in arc welding, J. phys. D: appl. Phys. 31, 1233-1244 (1998)
[4] K.A. Lyttle, shielding gas for welding, in: D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards (Eds.), ASM Handbook, vol. 6: Welding, Brazing, and Soldering, American Society for Metals, Metals Park, OH, 1993, pp. 64-69.
[5] Jones, L. A.; Eagar, T. W.; Lang, J. H.: Images of steel electrode in ar-2%O2 shielding during constant current gas metal arc welding, Weld. J. 77, 135s-141s (1998)
[6] Lin, Q.; Li, X.; Simpson, S. W.: Metal transfer measurements in gas metal arc welding, J. phys. D: appl. Phys. 34, 347-353 (2001)
[7] Rhee, S.; Kannatey-Asibu, E.: Observation of metal transfer during gas metal arc welding, Weld. J. 71, 381s-386s (1992)
[8] Nemchinsky, V. A.: The effect of the type of plasma gas on current contraction at the molten tip of an arc electrode, J. phys. D: appl. Phys. 29, 1202-1208 (1996)
[9] Choi, S. K.; Yoo, C. D.; Kim, Y. S.: The dynamic analysis of metal transfer in pulsed current gas metal arc welding, J. phys. D: appl. Phys. 31, 207-215 (1998)
[10] Wang, F.; Hou, W. K.; Hu, S. J.; Kannatey-Asibu, E.; Schultz, W. W.; Wang, P. C.: Modelling and analysis of metal transfer in gas metal arc welding, J. phys. D: appl. Phys. 36, 1143-1152 (2003)
[11] Haidar, J.; Lowke, J. J.: Predictions of metal droplet formation in arc welding, J. appl. Phys. D: appl. Phys. 29, 2951-2960 (1996)
[12] Haidar, J.: Prediction of metal droplet formation in gas metal arc welding II, J. appl. Phys. 84, 3530-3540 (1998)
[13] Haidar, J.: An analysis of heat transfer and fume production in gas metal arc welding. III, J. appl. Phys. 85, 3448-3459 (1999)
[14] Fan, H. G.; Kovacevic, R.: A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool, J. phys. D: appl. Phys. 37, 2531-2544 (2004)
[15] Fan, H. G.; Kovacevic, R.: Droplet formation, detachment, and impingement on the molten pool in gas metal arc welding, Metall. trans. 30B, 791-801 (1999)
[16] Wang, Y.; Tsai, H. L.: Impingement of filler droplets and weld pool dynamics during gas metal arc welding process, Int. J. Heat mass transfer 44, 2067-2080 (2001) · Zbl 1064.76624 · doi:10.1016/S0017-9310(00)00251-9
[17] Wang, Y.; Shi, Q.; Tsai, H. L.: Modeling of the effects of surface-active elements on flow patterns and weld penetration, Metall. trans. 32B, 145-161 (2001)
[18] Wang, Y.; Tsai, H. L.: Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding, Metall. trans. 32B, 501-515 (2001)
[19] Fan, H. G.; Kovacevic, R.: Dynamic analysis of globular metal transfer in gas metal arc welding – a comparison of numerical and experimental results, J. phys. D: appl. Phys. 31, 2929-2941 (1998)
[20] Cao, Z.; Yang, Z.; Chen, X. L.: Three-dimensional simulation of transient GMA weld pool with free surface, Weld. J. 82, 169s-176s (2004)
[21] Hu, J.; Tsai, H. L.: Heat and mass transfer in gas metal arc welding, part II: The metal, Int. J. Heat mass transfer 50, 808-820 (2007) · Zbl 1124.80329 · doi:10.1016/j.ijheatmasstransfer.2006.08.025
[22] Jönsson, P. G.; Eagar, T. W.; Szekely, J.: Heat and metal transfer in gas metal arc welding using argon and helium, Metall. trans. 26B, 383-395 (1995)
[23] Haidar, J.; Lowke, J. J.: Effect of CO2 shielding gas on metal droplet formation in arc welding, IEEE trans. Plasma sci. 25, 931-936 (1997)
[24] Jones, L. A.; Eagar, T. W.; Lang, J. H.: Magnetic forces acting on molten drops in gas metal arc welding, J. phys. D: appl. Phys. 31, 93-106 (1998)
[25] Jones, L. A.; Eagar, T. W.; Lang, J. H.: A dynamic model of drops detaching from a gas metal arc welding electrode, J. phys. D: appl. Phys. 31, 107-123 (1998)
[26] Kim, Y. S.; Mceligot, D. M.; Eagar, T. W.: Analysis of electrode heat transfer in gas metal arc welding, Weld. J. 70, 20s-30s (1991)
[27] Hazlett, T. B.; Gordon, G. M.: Studies of welding arcs using various atmospheres and power supplies, Weld. J. 36, 382s-386s (1957)
[28] Maecker, H.: Z. phys., Z. phys. 141, 198-216 (1955)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.