zbMATH — the first resource for mathematics

Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations. (English) Zbl 1203.76153
Summary: We present an unconditionally energy stable and solvable finite difference scheme for the Cahn-Hilliard-Hele-Shaw (CHHS) equations, which arise in models for spinodal decomposition of a binary fluid in a Hele-Shaw cell, tumor growth and cell sorting, and two phase flows in porous media. We show that the CHHS system is a specialized conserved gradient-flow with respect to the usual Cahn-Hilliard (CH) energy, and thus techniques for bistable gradient equations are applicable. In particular, the scheme is based on a convex splitting of the discrete CH energy and is semi-implicit. The equations at the implicit time level are nonlinear, but we prove that they represent the gradient of a strictly convex functional and are therefore uniquely solvable, regardless of time step-size. Owing to energy stability, we show that the scheme is stable in the \(L_{s}^{\infty}(0,T;H_{h}^{1})\) norm, and, assuming two spatial dimensions, we show in an appendix that the scheme is also stable in the \(L_{s}^{2}(0,T;H_{h}^{2})\) norm. We demonstrate an efficient, practical nonlinear multigrid method for solving the equations. In particular, we provide evidence that the solver has nearly optimal complexity. We also include a convergence test that suggests that the global error is of first order in time and of second order in space.

76S05 Flows in porous media; filtration; seepage
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76M20 Finite difference methods applied to problems in fluid mechanics
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
76D27 Other free boundary flows; Hele-Shaw flows
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI
[1] Bertozzi, A., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16, 285–291 (2007) · Zbl 1279.94008 · doi:10.1109/TIP.2006.887728
[2] Bramble, J.: A second order finite difference analog of the first biharmonic boundary value problem. Numer. Math. 9, 236–249 (1966) · Zbl 0154.41105 · doi:10.1007/BF02162087
[3] Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. AI, 27–34 (1949) · Zbl 0041.54204
[4] Cahn, J.: On spinodal decomposition. Acta Metall. 9, 795 (1961) · doi:10.1016/0001-6160(61)90182-1
[5] Cahn, J., Hilliard, J.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28, 258 (1958) · doi:10.1063/1.1744102
[6] Elliot, C., Stuart, A.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993) · Zbl 0792.65066 · doi:10.1137/0730084
[7] Eyre, D.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale (1998)
[8] Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006) · Zbl 1344.76052 · doi:10.1137/050638333
[9] Feng, X., Wise, S.: Analysis of a Fully Discrete Finite Element Approximation of a Darcy-Cahn-Hilliard Diffuse Interface Model for the Hele-Shaw Flow (in preparation) · Zbl 1426.76258
[10] Furihata, D.: A stable and conservative finite difference scheme for the Cahn-Hilliard equation. Numer. Math. 87, 675–699 (2001) · Zbl 0974.65086 · doi:10.1007/PL00005429
[11] Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009) · Zbl 1171.82015 · doi:10.1016/j.jcp.2009.04.020
[12] Kay, D., Welford, R.: A multigrid finite element solver for the Cahn-Hilliard equation. J. Comput. Phys. 212, 288–304 (2006) · Zbl 1081.65091 · doi:10.1016/j.jcp.2005.07.004
[13] Kay, D., Welford, R.: Efficient numerical solution of Cahn-Hilliard-Navier Stokes fluids in 2d. SIAM J. Sci. Comput. 29, 2241–2257 (2007) · Zbl 1154.76033 · doi:10.1137/050648110
[14] Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193, 511–543 (2003) · Zbl 1109.76348 · doi:10.1016/j.jcp.2003.07.035
[15] Lee, H., Lowengrub, J., Goodman, J.: Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14, 492–513 (2002) · Zbl 1184.76316 · doi:10.1063/1.1425843
[16] Lee, H., Lowengrub, J., Goodman, J.: Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime. Phys. Fluids 14, 514–545 (2002) · Zbl 1184.76317 · doi:10.1063/1.1425844
[17] Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228 (2003) · Zbl 1092.76069 · doi:10.1016/S0167-2789(03)00030-7
[18] Lowengrub, J., Truskinovsky, L.: Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998) · Zbl 0927.76007 · doi:10.1098/rspa.1998.0273
[19] Shinozaki, A., Oono, Y.: Spinodal decomposition in a Hele-Shaw cell. Phys. Rev. A 45, R2161–R2164 (1992) · doi:10.1103/PhysRevA.45.R2161
[20] Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, New York (2005)
[21] Vollmayr-Lee, B., Rutenberg, A.: Fast and accurate coarsening simulation with an unconditionally stable time step. Phys. Rev. E 68, 066,703 (2003) · doi:10.1103/PhysRevE.68.066703
[22] Wang, C., Wang, X., Wise, S.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Cont. Dyn. Sys. A 28, 405–423 (2010) · Zbl 1201.65166 · doi:10.3934/dcds.2010.28.405
[23] Wang, C., Wise, S.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. (in review) · Zbl 1230.82005
[24] Wise, S., Lowengrub, J., Cristini, V.: An adaptive algorithm for simulating solid tumor growth using mixture models. Math. Comput. Model. (in review) · Zbl 1211.65123
[25] Wise, S., Lowengrub, J., Frieboes, H., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth–I model and numerical method. J. Theor. Biol. 253, 524–543 (2008) · Zbl 1398.92135 · doi:10.1016/j.jtbi.2008.03.027
[26] Wise, S., Wang, C., Lowengrub, J.: An energy stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009) · Zbl 1201.35027 · doi:10.1137/080738143
[27] Zheng, X., Wise, S., Cristini, V.: Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67, 211–259 (2005) · Zbl 1334.92214 · doi:10.1016/j.bulm.2004.08.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.