×

zbMATH — the first resource for mathematics

Homotopy perturbation method for nonlinear partial differential equations of fractional order. (English) Zbl 1203.65212
Summary: The aim of this letter is to present an efficient and reliable treatment of the homotopy perturbation method (HPM) for nonlinear partial differential equations with fractional time derivative. The fractional derivative is described in the Caputo sense. The modified algorithm provides approximate solutions in the form of convergent series with easily computable components. The obtained results are in good agreement with the existing ones in open literature and it is shown that the technique introduced here is robust, efficient and easy to implement.

MSC:
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35G20 Nonlinear higher-order PDEs
26A33 Fractional derivatives and integrals
35B20 Perturbations in context of PDEs
35C10 Series solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Miller, K.S.; Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993), John Wiley and Sons New York · Zbl 0789.26002
[2] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego, CA · Zbl 0918.34010
[3] Momani, S., Math. comput. simul., 70, 2, 110, (2005)
[4] Momani, S., Chaos solitons fractals, 28, 4, 930, (2006)
[5] Momani, S.; Odibat, Z., Appl. math. comput., 177, 2, 488, (2006)
[6] Odibat, Z.; Momani, S., Appl. math. comput., 181, 1, 767, (2006)
[7] Momani, S.; Odibat, Z., Chaos solitons fractals, 31, 5, 1248, (2007)
[8] Momani, S.; Odibat, Z., Phys. lett. A, 355, 4, 271, (2006)
[9] S. Momani, Z. Odibat, J. Comput. Appl. Math., in press
[10] He, J.H., Comput. methods appl. mech. engrg., 167, 57, (1998)
[11] Odibat, Z.; Momani, S., Int. J. nonlin. sci. numer. simul., 1, 7, 15, (2006)
[12] A. Arikoğlu, I. Özkol, Chaos Solitons Fractals, in press
[13] Z. Odibat, S. Momani, Chaos Solitons Fractals, in press
[14] He, J.H., Comput. methods appl. mech. engrg., 178, 257, (1999)
[15] He, J.H., Int. J. non-linear mech., 35, 1, 37, (2000)
[16] El-Shahed, M., Int. J. nonlin. sci. numer. simul., 6, 2, 163, (2005)
[17] He, J.H., Appl. math. comput., 151, 287, (2004)
[18] He, J.H., Int. J. nonlin. sci. numer. simul., 6, 2, 207, (2005)
[19] He, J.H., Phys. lett. A, 374, 4-6, 228, (2005)
[20] He, J.H., Chaos solitons fractals, 26, 3, 695, (2005)
[21] He, J.H., Phys. lett. A, 350, 1-2, 87, (2006)
[22] He, J.H., Appl. math. comput., 135, 73, (2003)
[23] He, J.H., Appl. math. comput., 156, 527, (2004)
[24] He, J.H., Appl. math. comput., 156, 591, (2004)
[25] He, J.H., Chaos solitons fractals, 26, 3, 827, (2005)
[26] Siddiqui, A.; Mahmood, R.; Ghori, Q., Int. J. nonlin. sci. numer. simul., 7, 1, 7, (2006)
[27] Siddiqui, A.; Ahmed, M.; Ghori, Q., Int. J. nonlin. sci. numer. simul., 7, 1, 15, (2006)
[28] He, J.H., Int. J. mod. phys. B, 20, 10, 1141, (2006)
[29] Abbasbandy, S., Appl. math. comput., 172, 485, (2006)
[30] Abbasbandy, S., Appl. math. comput., 173, 493, (2006)
[31] Caputo, M., J. R. astron. soc., 13, 529, (1967)
[32] He, J.H., Int. J. mod. phys. B, 20, 18, 2561, (2006)
[33] Odibat, Z.; Momani, S., Appl. math. mod., (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.