zbMATH — the first resource for mathematics

Image recovery via nonlocal operators. (English) Zbl 1203.65088
Summary: This paper considers two nonlocal regularizations for image recovery, which exploit the spatial interactions in images. We get superior results using preprocessed data as input for the weighted functionals. Applications discussed include image deconvolution and tomographic reconstruction. The numerical results show our method outperforms some previous ones.

65J22 Numerical solution to inverse problems in abstract spaces
92C55 Biomedical imaging and signal processing
Full Text: DOI
[1] Andrews, H.C., Hunt, B.R.: Digital Image Restoration. Prentice-Hall, Englewood Cliffs (1977) · Zbl 0379.62098
[2] Avinash, C., Malcolm, S.: Principles of Computerized Tomographic Imaging. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2001) · Zbl 0984.92017
[3] Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005) · Zbl 1108.94004 · doi:10.1137/040616024
[4] Buades, A., Coll, B., Morel, J.M.: Image enhancement by non-local reverse heat equation. Technical Report 22, CMLA (2006)
[5] Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004) · Zbl 1366.94056 · doi:10.1023/B:JMIV.0000011320.81911.38
[6] Chan, T.F., Shen, J.: Mathematical models for local non-texture inpainting. J. Appl. Math. 62(3), 1019–1043 (2002) · Zbl 1050.68157
[7] Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998) · doi:10.1109/83.661187
[8] Darbon, J., Osher, S.: Fast discrete optimization for sparse approximations and deconvolution. Technical report, UCLA (2007, to appear)
[9] Donoho, D., Johnstone, J.: Ideal spatial adaption via wavelet shrinkage. Biometrika 81(3), 425–455 (1994) · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[10] Efros, A.A., Leung, T.K.: Texture synthesis by non-parameteric sampling. In: ICCV, vol. 2, pp. 1033–1038 (1999)
[11] Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6(2), 595–630 (2007) · Zbl 1140.68517 · doi:10.1137/060669358
[12] Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008) · Zbl 1181.35006 · doi:10.1137/070698592
[13] Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation based image restoration. SIAM J. Sci. Comput. 27(2), 622–645 (2004) · Zbl 1094.68108 · doi:10.1137/040608982
[14] Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 · Zbl 1177.65088
[15] He, L., Marquina, A., Osher, S.: Blind deconvolution using TV regularization and Bregman iteration. Int. J. Imaging Syst. Technol. 15(1), 74–83 (2005) · doi:10.1002/ima.20040
[16] Hummel, R.A., Kimia, B., Zucker, S.W.: Gaussian blur and the heat equation: forward and inverse solutions. In: IEEE Computer Vision and Pattern Recognition, vol. 2, pp. 416–421 (1983)
[17] Hummel, R.A., Kimia, B., Zucker, S.W.: Deblurring Gaussian blur. In: Computer Vision, Graphics, and Image Processing, vol. 38, pp. 66–80 (1987) · Zbl 0643.94004
[18] Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005) · Zbl 1161.68827 · doi:10.1137/050622249
[19] Kramer, H.P., Bruckner, J.B.: Iterations of a non-linear transformation for enhancement of digital images. In: Pattern Recognition, vol. 7, pp. 53–58 (1975) · Zbl 0318.68062
[20] Marquina, A.: Nonlinear inverse scale space methods for total variation blind deconvolution. SIAM J. Imaging Sci. 2(1), 64–83 (2009) · Zbl 1177.65193 · doi:10.1137/080724289
[21] Marquina, A., Osher, S.: Image super-resolution by TV-regularization and Bregman iteration. J. Sci. Comput. 37(3), 367–382 (2008) · Zbl 1203.94014 · doi:10.1007/s10915-008-9214-8
[22] PeyrĂ©, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: ECCV ’08: European Conference on Computer Vision, pp. 57–68. Springer, Berlin (2008) · Zbl 1223.68116
[23] Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[24] Tikhonov, A., Arsenin, V.: Solution of Ill-Posed Problems. Wiley, New York (1977) · Zbl 0354.65028
[25] Yaroslavsky, L.P.: Digital Picture Processing, an Introduction. Springer, Berlin (1985)
[26] Zhou, D., Scholkopf, B.: A regularization framework for learning from graph data. In: ICML Workshop on Stat. Relational Learning and Its Connections to Other Fields (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.