zbMATH — the first resource for mathematics

On the adjacent vertex distinguishing total coloring numbers of graphs with \(\varDelta =3\). (English) Zbl 1203.05052
Summary: An adjacent vertex distinguishing total-coloring of a simple graph \(G\) is a proper total-coloring of \(G\) such that no pair of adjacent vertices meets the same set of colors. The minimum number of colors \(\chi _a ^{\prime \prime}\) required to give \(G\) an adjacent vertex distinguishing total-coloring is studied. We proved \(\chi _a ^{\prime \prime}\leqslant 6\) for graphs with maximum degree \(\varDelta (G)=3\) in this paper.

05C15 Coloring of graphs and hypergraphs
Full Text: DOI
[1] Akbari, S.; Bidkhori, H.; Nosrati, N., \(r\)-strong edge colorings of graphs, Discrete math., 306, 23, 3005-3010, (2006) · Zbl 1112.05035
[2] Balister, P.N.; Győri, E.; Lehel, J.; Schelp, R.H., Adjacent vertex distinguishing edge-colorings, SIAM J. discrete math., 21, 1, 237-250, (2007) · Zbl 1189.05056
[3] Bazgan, C.; Harkat-Benhamdine, A.; Li, H.; Woźniak, M., On the vertex-distinguishing edge colorings of graphs, J. combin. theory, 75, 288-301, (1999) · Zbl 0932.05036
[4] Bondy, A.; Murty, U.S.R., Graph theory with applications, (1976), The Macmillan Press Ltd New York · Zbl 1226.05083
[5] Hatami, H., \(\Delta + 300\) is a bound on the adjacent vertex distinguishing edge chromatic number, J. combin. theory ser. B, 95, 246-256, (2005) · Zbl 1075.05034
[6] Wang, H., On the adjacent vertex distinguishing total chromatic numbers of graphs with \(\Delta(G) = 3\), J. combin. optim., 14, 87-109, (2007) · Zbl 1125.05043
[7] Yap, H.P., Total colouring of graphs, (1996), Springer Berlin, Heidelberg · Zbl 0839.05001
[8] Zhang, Z.; Chen, X., On the adjacent vertex distinguishing total coloring of graphs, Sci. China ser. A, 48, 3, 289-299, (2005) · Zbl 1080.05036
[9] Zhang, Z.; Liu, L.; Wang, J., Adjacent strong edge coloring of graphs, Appl. math. lett., 15, 623-626, (2002) · Zbl 1008.05050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.