×

zbMATH — the first resource for mathematics

A new approach for the solution of three-dimensional magnetohydrodynamic rotating flow over a shrinking sheet. (English) Zbl 1202.76157
Summary: The numerical solution of magnetohydrodynamic (MHD) and rotating flow over a porous shrinking sheet is obtained by the new approach known as spectral homotopy analysis method (SHAM). Using a similarity transformation, the governing equations for the momentum are reduced to a set of ordinary differential equations and are solved by the SHAM approach to determine velocity distributions and shear stress variations for different governing parameters. The SHAM results are analysed and validated against numerical results obtained using MATLAB’s built-in bvp4c routine, and good agreement is observed.

MSC:
76W05 Magnetohydrodynamics and electrohydrodynamics
Software:
Matlab
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] B. C. Sakiadis, “Boundary-layer behaviour on continuous solid surfaces,” AIChE, vol. 7, p. 268, 1961.
[2] L. J. Crane, “Flow past a stretching plate,” Zeitschrift für angewandte Mathematik und Physik, vol. 21, pp. 445-447, 1970.
[3] E. Magyari and B. Keller, “Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface,” Journal of Physics D, vol. 32, no. 5, pp. 577-585, 1999.
[4] E. Magyari and B. Keller, “Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls,” European Journal of Mechanics. B, vol. 19, no. 1, pp. 109-122, 2000. · Zbl 0976.76021 · doi:10.1016/S0997-7546(00)00104-7
[5] E. Magyari and B. Keller, “A direct method to calculate the heat transfer coefficient of steady similar boundary layer flows induced by continuous moving surface,” International Journal of Thermal Sciences, vol. 44, pp. 245-254, 2005.
[6] S.-J. Liao and I. Pop, “Explicit analytic solution for similarity boundary layer equations,” International Journal of Heat and Mass Transfer, vol. 47, no. 1, pp. 75-85, 2004. · Zbl 1045.76008 · doi:10.1016/S0017-9310(03)00405-8
[7] E. M. Sparrow and J. P. Abraham, “Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid,” International Journal of Heat and Mass Transfer, vol. 48, no. 15, pp. 3047-3056, 2005. · Zbl 1189.76143 · doi:10.1016/j.ijheatmasstransfer.2005.02.028
[8] J. P. Abraham and W. M. Sparrow, “Friction drag resulting from the simultaneous imposed motions of a freestream and its bounding surface,” International Journal of Heat and Fluid Flow, vol. 26, pp. 289-295, 2005.
[9] C. Y. Wang, “Stretching a surface in a rotating fluid,” Journal of Applied Mathematics and Physics, vol. 39, pp. 177-185, 1999. · Zbl 0642.76118 · doi:10.1007/BF00945764
[10] V. Rajeswari and G. Nath, “Unsteady flow over a stretching surface in a rotating fluid,” International Journal of Engineering Science, vol. 30, no. 6, pp. 747-756, 1992. · Zbl 0779.76096 · doi:10.1016/0020-7225(92)90104-O
[11] R. Nazar, N. Amin, and I. Pop, “Unsteady boundary layer flow due to a stretching surface in a rotating fluid,” Mechanics Research Communications, vol. 31, pp. 121-128, 2004. · Zbl 1053.76017 · doi:10.1016/j.mechrescom.2003.09.004
[12] P. D. Ariel, “On computation of the three-dimensional flow past a stretching sheet,” Applied Mathematics and Computation, vol. 188, no. 2, pp. 1244-1250, 2007. · Zbl 1114.76056 · doi:10.1016/j.amc.2006.10.083
[13] M. M. Rashidi and S. Dinarvand, “Purely analytic approximate solutions for steady three-dimensional problem of condensation film on inclined rotating disk by homotopy analysis method,” Nonlinear Analysis. Real World Applications, vol. 10, no. 4, pp. 2346-2356, 2009. · Zbl 1163.34307 · doi:10.1016/j.nonrwa.2008.04.018
[14] M. Kumari and G. Nath, “Unsteady MHD mixed convection flow over an impulsively stretched permeable vertical surface in a quiescent fluid,” International Journal of Non-Linear Mechanics, vol. 45, no. 3, pp. 310-319, 2010. · doi:10.1016/j.ijnonlinmec.2009.12.005
[15] T. Fang, J. Zhang, and S. Yao, “Slip MHD viscous flow over a stretching sheet-an exact solution,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 11, pp. 3731-3737, 2009. · doi:10.1016/j.cnsns.2009.02.012
[16] H. S. Takhar, A. J. Chamkha, and G. Nath, “MHD flow over a moving plate in a rotating fluid with magnetic field, Hall currents and free stream velocity,” International Journal of Engineering Science, vol. 40, pp. 1511-1527, 2002. · Zbl 1211.76157 · doi:10.1016/S0020-7225(02)00016-2
[17] K. Vajravelu and B. V. R. Kumar, “Analytical and numerical solutions of a coupled non-linear system arising in a three-dimensional rotating flow,” International Journal of Non-Linear Mechanics, vol. 39, no. 1, pp. 13-24, 2004. · Zbl 1225.76223 · doi:10.1016/S0020-7462(02)00122-1
[18] C. Y. Wang, “Liquid film on an unsteady stretching surface,” Quarterly of Applied Mathematics, vol. 48, no. 4, pp. 601-610, 1990. · Zbl 0714.76036
[19] T. Hayat, M. Sajid, and I. Pop, “Three-dimensional flow over a stretching surface in a viscoelastic fluid,” Nonlinear Analysis. Real World Applications, vol. 9, no. 4, pp. 1811-1822, 2008. · Zbl 1154.76315 · doi:10.1016/j.nonrwa.2007.05.010
[20] M. Sajid and T. Hayat, “The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet,” Chaos, Solitons and Fractals, vol. 39, no. 3, pp. 1317-1323, 2009. · Zbl 1197.76100 · doi:10.1016/j.chaos.2007.06.019
[21] B. Yao and J. Chen, “A new analytical solution branch for the Blasius equation with a shrinking sheet,” Applied Mathematics and Computation, vol. 215, no. 3, pp. 1146-1153, 2009. · Zbl 1172.76011 · doi:10.1016/j.amc.2009.06.057
[22] N. F. M. Noor, A. S. Kechil, and I. Hashim, “Simple non-perturbative solution for MHD viscous flow due to a shrinking sheet,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 2, pp. 144-148, 2010. · Zbl 1221.76154 · doi:10.1016/j.cnsns.2009.03.034
[23] Muhaimina, R. Kandasamya, and I. Hashim, “Effect of chemical reaction, heat and mass transfer on nonlinear boundary layer past a porous shrinking sheet in the presence of suction,” Nuclear Engineering and Design, vol. 240, no. 5, pp. 933-939, 2010.
[24] S. S. Motsa, P. Sibanda, and S. Shateyi, “A new spectral-homotopy analysis method for solving a nonlinear second order BVP,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 9, pp. 2293-2302, 2010. · Zbl 1222.65090 · doi:10.1016/j.cnsns.2009.09.019
[25] S. Liao, “Notes on the homotopy analysis method: some definitions and theorems,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 983-997, 2009. · Zbl 1221.65126 · doi:10.1016/j.cnsns.2008.04.013
[26] S. Liao, Beyond Perturbation, vol. 2 of CRC Series: Modern Mechanics and Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2004. · Zbl 1051.76001
[27] A. S. Bataineh, M. S. M. Noorani, and I. Hashim, “Modified homotopy analysis method for solving systems of second-order BVPs,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 2, pp. 430-442, 2009. · Zbl 1221.65196 · doi:10.1016/j.cnsns.2007.09.012
[28] A. Sami Bataineh, M. S. M. Noorani, and I. Hashim, “On a new reliable modification of homotopy analysis method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 2, pp. 409-423, 2009. · Zbl 1221.65195 · doi:10.1016/j.cnsns.2007.10.007
[29] S. Dinarvand and M. M. Rashidi, “A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in a rectangular domain bounded by two moving porous walls,” Nonlinear Analysis. Real World Applications, vol. 11, no. 3, pp. 1502-1512, 2010. · Zbl 1189.35249 · doi:10.1016/j.nonrwa.2009.03.006
[30] G. Domairry, A. Mohsenzadeh, and M. Famouri, “The application of homotopy analysis method to solve nonlinear differential equation governing Jeffery-Hamel flow,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 1, pp. 85-95, 2009. · Zbl 1221.76056 · doi:10.1016/j.cnsns.2007.07.009
[31] T. Hayat, T. Javed, and M. Sajid, “Analytic solution for rotating flow and heat transfer analysis of a third-grade fluid,” Acta Mechanica, vol. 191, no. 3-4, pp. 219-229, 2007. · Zbl 1117.76069 · doi:10.1007/s00707-007-0451-y
[32] T. Hayat, S. B. Khan, M. Sajid, and S. Asghar, “Rotating flow of a third grade fluid in a porous space with Hall current,” Nonlinear Dynamics, vol. 49, no. 1-2, pp. 83-91, 2007. · Zbl 1181.76149 · doi:10.1007/s11071-006-9105-1
[33] T. Hayat and M. Sajid, “On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder.,” Physics Letters A, vol. 361, pp. 316-322, 2007. · Zbl 1170.76307 · doi:10.1016/j.physleta.2006.09.060
[34] T. Hayat and M. Sajid, “Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet,” International Journal of Heat and Mass Transfer, vol. 50, no. 1-2, pp. 75-84, 2007. · Zbl 1104.80006 · doi:10.1016/j.ijheatmasstransfer.2006.06.045
[35] T. Hayat, Z. Abbas, M. Sajid, and S. Asghar, “The influence of thermal radiation on MHD flow of a second grade fluid,” International Journal of Heat and Mass Transfer, vol. 50, no. 5-6, pp. 931-941, 2007. · Zbl 1124.80325 · doi:10.1016/j.ijheatmasstransfer.2006.08.014
[36] T. Hayat and M. Sajid, “Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid,” International Journal of Engineering Science, vol. 45, pp. 393-401, 2007. · Zbl 1213.76137 · doi:10.1016/j.ijengsci.2007.04.009
[37] T. Hayat, N. Ahmed, M. Sajid, and S. Asghar, “On the MHD flow of a second grade fluid in a porous channel,” Computers & Mathematics with Applications, vol. 54, no. 3, pp. 407-414, 2007. · Zbl 1123.76072 · doi:10.1016/j.camwa.2006.12.036
[38] T. Hayat, M. Khan, and M. Ayub, “The effect of the slip condition on flows of an Oldroyd 6-constant fluid,” Journal of Computational and Applied Mathematics, vol. 202, no. 2, pp. 402-413, 2007. · Zbl 1147.76550 · doi:10.1016/j.cam.2005.10.042
[39] T. Hayat, N. Ahmed, and M. Sajid, “Analytic solution for MHD flow of a third order fluid in a porous channel,” Journal of Computational and Applied Mathematics, vol. 214, no. 2, pp. 572-582, 2008. · Zbl 1144.76059 · doi:10.1016/j.cam.2007.03.013
[40] T. Hayat, M. Khan, and M. Ayub, “On the explicit analytic solutions of an Oldroyd 6-constant fluid,” International Journal of Engineering Science, vol. 42, no. 2, pp. 123-135, 2004. · Zbl 1211.76009 · doi:10.1016/S0020-7225(03)00281-7
[41] T. Hayat, R. Naz, and M. Sajid, “On the homotopy solution for Poiseuille flow of a fourth grade fluid,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 3, pp. 581-589, 2010. · Zbl 1221.76033 · doi:10.1016/j.cnsns.2009.04.024
[42] T. Hayat, R. Ellahi, P. D. Ariel, and S. Asghar, “Homotopy solution for the channel flow of a third grade fluid,” Nonlinear Dynamics, vol. 45, no. 1-2, pp. 55-64, 2006. · Zbl 1100.76005 · doi:10.1007/s11071-005-9015-7
[43] J. Hosseini and A. F. Mohammad, “Application of homotopy analysis method for nonlinear Sturm-Liouville problems,” Journal of Advanced Research in Differential Equations, vol. 1, pp. 11-20, 2009.
[44] A. Mehmood and A. Ali, “Heat transfer analysis of three-dimensional flow in a channel of lower stretching wall,” Journal of the Taiwan Institute of Chemical Engineers, vol. 41, no. 1, pp. 29-34, 2010. · doi:10.1016/j.jtice.2009.03.011
[45] M. M. Rashidi and S. Dinarvand, “Purely analytic approximate solutions for steady three-dimensional problem of condensation film on inclined rotating disk by homotopy analysis method,” Nonlinear Analysis. Real World Applications, vol. 10, no. 4, pp. 2346-2356, 2009. · Zbl 1163.34307 · doi:10.1016/j.nonrwa.2008.04.018
[46] M. Sajid, T. Hayat, S. Aghar, and K. Varjravelu, “Analytic solution for axisymetric flow over a nonlinear stretching sheet,” Archives of Applied Mechanics, vol. 78, pp. 127-134, 2008. · Zbl 1161.76460 · doi:10.1007/s00419-007-0146-9
[47] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer, New York, NY, USA, 1988. · Zbl 0658.76001
[48] W. S. Don and A. Solomonoff, “Accuracy and speed in computing the Chebyshev collocation derivative,” SIAM Journal on Scientific Computing, vol. 16, no. 6, pp. 1253-1268, 1995. · Zbl 0840.65010 · doi:10.1137/0916073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.