×

zbMATH — the first resource for mathematics

A note on bootstrap approximations for the empirical copula process. (English) Zbl 1202.62055
Summary: It is well known that the empirical copula process converges weakly to a centered Gaussian field. Because the covariance structure of the limiting process depends on the partial derivatives of the unknown copula, several bootstrap approximations for the empirical copula process have been proposed in the literature. We present a brief review of these procedures. Because some of these procedures also require the estimation of the derivatives of the unknown copula we propose an alternative approach which circumvents this problem. Finally a simulation study is presented in order to compare the different bootstrap approximations for the empirical copula process.

MSC:
62G09 Nonparametric statistical resampling methods
62G20 Asymptotic properties of nonparametric inference
62G30 Order statistics; empirical distribution functions
65C60 Computational problems in statistics (MSC2010)
Software:
TwoCop
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, S.X.; Huang, T.-M., Nonparametric estimation of copula functions for dependence modelling, Canadian journal of statistics, 35, 265-282, (2007) · Zbl 1129.62023
[2] Deheuvels, P., La fonction de dépendance empirique et ses propriétés, Bulletin de la classe des sciences, académie royale de belgique, 65, 274-292, (1979) · Zbl 0422.62037
[3] Fermanian, J.-D.; Radulović, D.; Wegkamp, M.J., Weak convergence of empirical copula processes, Bernoulli, 10, 847-860, (2004) · Zbl 1068.62059
[4] Gänssler, P.; Stute, W., Seminar on empirical processes, (1987), Birkhäuser Basel
[5] Genest, C.; Ghoudi, K.; Rivest, L.-P., A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, 82, 543-552, (1995) · Zbl 0831.62030
[6] Ghoudi, K.; Rémillard, B., Empirical processes based on pseudo-observations II: the multivariate case, (), 381-406 · Zbl 1079.60024
[7] Kojadinovic, I., Yan, J., 2009. A goodness-of-fit test for multivariate copulas based on multiplier central limit theorems. Statistics and Computing (in press). · Zbl 1274.62400
[8] Kojadinovic, I., Yan, J., Holmes, M., 2009. Fast large sample goodness-of-fit tests for copulas. Statistica Sinica (in press). · Zbl 1214.62049
[9] Kosorok, M.R., 2008. Introduction to Empirical Processes and Semiparametric Inference. In: Springer Series in Statistics. New York. · Zbl 1180.62137
[10] Nelsen, R.B., An introduction to copulas, (1998), Springer-Verlag New York
[11] Omelka, M.; Gijbels, I.; Veraverbeke, N., Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing, Annals of statistics, 37, 5B, 3023-3058, (2009) · Zbl 1360.62160
[12] Rémillard, B.; Scaillet, O., Testing for equality between two copulas, Journal of multivariate analysis, 100, 377-386, (2009) · Zbl 1157.62401
[13] Scaillet, O., A kolmogorov – smirnov type test for positive quadrant dependence, Canadian journal of statistics, 33, 415-427, (2005) · Zbl 1077.62036
[14] Tsukahara, H., Semiparametric estimation in copula models, Canadian journal of statistics, 33, 357-375, (2005) · Zbl 1077.62022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.